Publications by authors named "Naudi A"

Ginseng, a popular herbal supplement among athletes, is believed to enhance exercise capacity and performance. This study investigated the short-term effects of Panax ginseng extract (PG) on aerobic capacity, lipid profile, and cytokines. In a 14-day randomized, double-blind trial, male participants took 500 mg of PG daily.

View Article and Find Full Text PDF

The fatty acid elongase elongation of very long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, docosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPA-6) in vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPA-6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation.

View Article and Find Full Text PDF

Aims: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1 mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation.

View Article and Find Full Text PDF

Purpose: HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide.

Methods And Results: A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice.

View Article and Find Full Text PDF

Species longevity varies significantly across animal species, but the underlying molecular mechanisms remain poorly understood. Recent studies and omics approaches suggest that phenotypic traits of longevity could converge in the mammalian target of rapamycin (mTOR) signalling pathway. The present study focuses on the comparative approach in heart tissue from 8 mammalian species with a ML ranging from 3.

View Article and Find Full Text PDF

Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely suggested to be one of the determinants of species longevity. The present study follows a comparative approach to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years.

View Article and Find Full Text PDF

Metformin is one of the treatments used for PCOS pathology decreasing body weight, plasma androgen, FSH and glucose levels. Unfortunately, there is little known about metformin's effects on lipid metabolism, a crucial process in PCOS pathology. We have employed a lipidomic approach to explore alterations in the plasma lipid profile of patients with PCOS following metformin treatment.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the usefulness of Alzheimer's disease Cerebrospinal Fluid (CSF) biomarkers in predicting the progression to dementia in patients with Mild Cognitive Impairment (MCI).

Methods: One hundred and thirteen patients were consecutively recruited from April 2012 to April 2014. Measurement of CSF biomarkers (amyloid-β42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau)) and a neuropsychological evaluation were performed for all patients.

View Article and Find Full Text PDF

Mitochondria have been increasingly recognized as a central regulatory nexus for multiple metabolic pathways, in addition to ATP production via oxidative phosphorylation (OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Carbohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accompanied by elevated serine synthesis.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ginseng is a widely used ingredient in several traditional Chinese medicine formulation, mainly as a prophylactic and restorative agent. Ginseng's Chinese traditional formulations have shown protective effects against atherosclerosis, suggesting that ginseng may be useful for the treatment of metabolic disorders.

Aim Of The Study: To evaluate whether the supplementation with Panax ginseng (PG) has an effect on blood lipid profile in humans.

View Article and Find Full Text PDF

Objective: This study aimed to characterize the differences in protein oxidation biomarkers in adipose tissue (AT) as an indicator of AT metabolism and bariatric surgery weight-loss success.

Methods: A human model, in which sixty-five individuals with obesity underwent bariatric surgery, and a diet-induced obesity animal model, in which animals were treated for 2 months with normocaloric diets, were analyzed to determine the associations between AT protein oxidation and body weight loss. Protein oxidative biomarkers were determined by gas chromatography/mass spectrometry in AT from human volunteers before the surgery, as well as 2 months after a diet treatment in the animal model.

View Article and Find Full Text PDF

X-Adrenoleukodystrophy (X-ALD) and its adult-onset, most prevalent variant adrenomyeloneuropathy (AMN) are caused by mutations in the peroxisomal transporter of the very long-chain fatty acid ABCD1. AMN patients classically present spastic paraparesis that can progress over decades, and a satisfactory treatment is currently lacking. Oxidative stress is an early culprit in X-ALD pathogenesis.

View Article and Find Full Text PDF

Background: The glycerophospholipids, synthesised from diacylglycerol (DAG), are one of the main lipid components of cell membranes. The lipid profile is an optimised feature associated with animal longevity. In this context, the hypothesis is presented that the DAG biosynthesis rate, and thus, the glycerophospholipids content, is related to animal longevity.

View Article and Find Full Text PDF

Oxidative damage and inflammation coexist in healthy human brain aging. The present study analyzes levels of protein adduction by lipid peroxidation (LP) end-products neuroketal (NKT) and malondialdehyde (MDA), as markers of protein oxidative damage, cycloxygenase-2 (COX-2) levels, as a marker of inflammation, and cytochrome P450 2J2 (CYP2J2), responsible of generation of neuroprotective products, in twelve brain regions in normal middle-aged individuals (MA) and old-aged (OA) individuals. In addition, levels of these markers were evaluated as a function of age as a continuous variable and correction for multiple comparisons.

View Article and Find Full Text PDF

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model ( null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin.

View Article and Find Full Text PDF

Aging is a multifactorial process which affects all animals. Aging as a result of damage accumulation is the most accepted explanation but the proximal causes remain to be elucidated. There is also evidence indicating that aging has an important genetic component.

View Article and Find Full Text PDF

Purpose: In this work, a non-targeted approach was used to unravel changes in the plasma lipidome of PCOS patients. The aim is to offer new insights in PCOS patients strictly selected in order to avoid confounding factors such as dyslipemia, obesity, altered glucose/insulin metabolism, cardiovascular disease, or cancer.

Results: Multivariate statistics revealed a specific lipidomic signature for PCOS patients without associated pathologies.

View Article and Find Full Text PDF

Sirtuin 2 (SIRT2) is a member of a family of NAD -dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging.

View Article and Find Full Text PDF

Fatty acids are key components in the structural diversity of lipids and play a strategic role in the functional properties of lipids which determine the structural and functional integrity of neural cell membranes, the generation of lipid signaling mediators, and the chemical reactivity of acyl chains. The present study analyzes the profile of lipid fatty acid composition of membranes of human frontal cortex area 8 in individuals ranging from 40 to 90 years old. Different components involved in polyunsaturated fatty acid biosynthesis pathways, as well as adaptive defense mechanisms involved in the lipid-mediated modulation of inflammation, are also assessed.

View Article and Find Full Text PDF

Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach.

View Article and Find Full Text PDF

Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions-entorhinal cortex, hippocampus, and frontal cortex-using mass spectrometry-based technologies.

View Article and Find Full Text PDF

Human brain aging is the physiological process which underlies as cause of cognitive decline in the elderly and the main risk factor for neurodegenerative diseases such as Alzheimer's disease. Human neurons are functional throughout a healthy adult lifespan, yet the mechanisms that maintain function and protect against neurodegenerative processes during aging are unknown. Here we show that protein oxidative and glycoxidative damage significantly increases during human brain aging, with a breakpoint at 60 years old.

View Article and Find Full Text PDF

Rapamycin consistently increases longevity in mice although the mechanism of action of this drug is unknown. In the present investigation we studied the effect of rapamycin on mitochondrial oxidative stress at the same dose that is known to increase longevity in mice (14mgofrapamycin/kg of diet). Middle aged mice (16months old) showed significant age-related increases in mitochondrial ROS production at complex I, accumulation of mtDNA fragments inside nuclear DNA, mitochondrial protein lipoxidation, and lipofuscin accumulation compared to young animals (4months old) in the liver.

View Article and Find Full Text PDF

Plasma lipidomic profile is species specific and an optimized feature associated with animal longevity. In the present work, the use of mass spectrometry technologies allowed us to determine the plasma lipidomic profile and the fatty acid pattern of healthy humans with exceptional longevity. Here, we show that it is possible to define a lipidomic signature only using 20 lipid species to discriminate adult, aged and centenarian subjects obtaining an almost perfect accuracy (90%-100%).

View Article and Find Full Text PDF

X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN).

View Article and Find Full Text PDF