Publications by authors named "Nattwut Ekapirat"

Background: The increase in artemisinin resistance threatens malaria elimination in Asia by the target date of 2030 and could derail control efforts in other endemic regions. This study aimed to develop up-to-date spatial distribution visualisations of the () gene markers of artemisinin resistance in for policy makers.

Methods: In this systematic review and spatiotemporal analysis we used the WorldWide Antimalarial Resistance Network (WWARN) surveyor molecular markers of artemisinin resistance database.

View Article and Find Full Text PDF

Background: In many areas of the Greater Mekong Subregion (GMS), malaria endemic regions have shrunk to patches of predominantly low-transmission. With a regional goal of elimination by 2030, it is important to use appropriate methods to analyze and predict trends in incidence in these remaining transmission foci to inform planning efforts. Climatic variables have been associated with malaria incidence to varying degrees across the globe but the relationship is less clear in the GMS and standard methodologies may not be appropriate to account for the lag between climate and incidence and for locations with low numbers of cases.

View Article and Find Full Text PDF

Identifying sources and sinks of malaria transmission is critical for designing effective intervention strategies particularly as countries approach elimination. The number of malaria cases in Thailand decreased 90% between 2012 and 2020, yet elimination has remained a major public health challenge with persistent transmission foci and ongoing importation. There are three main hotspots of malaria transmission in Thailand: Ubon Ratchathani and Sisaket in the Northeast; Tak in the West; and Yala in the South.

View Article and Find Full Text PDF

In much of the Greater Mekong Sub-region, malaria is now confined to patches and small foci of transmission. Malaria transmission is seasonal with the spatiotemporal patterns being associated with variation in environmental and climatic factors. However, the possible effect at different lag periods between meteorological variables and clinical malaria has not been well studied in the region.

View Article and Find Full Text PDF

Over 390 million people worldwide are infected with dengue fever each year. In the absence of an effective vaccine for general use, national control programs must rely on hospital readiness and targeted vector control to prepare for epidemics, so accurate forecasting remains an important goal. Many dengue forecasting approaches have used environmental data linked to mosquito ecology to predict when epidemics will occur, but these have had mixed results.

View Article and Find Full Text PDF

Background: The ability to produce timely and accurate estimation of dengue cases can significantly impact disease control programs. A key challenge for dengue control in Thailand is the systematic delay in reporting at different levels in the surveillance system. Efficient and reliable surveillance and notification systems are vital to monitor health outcome trends and early detection of disease outbreaks which vary in space and time.

View Article and Find Full Text PDF

Background: Tak Province, at the Thai-Myanmar border, is one of three high malaria incidence areas in Thailand. This study aimed to describe and identify possible factors driving the spatiotemporal trends of disease incidence from 2012 to 2015.

Methods: Climate variables and forest cover were correlated with malaria incidence using Pearson's r.

View Article and Find Full Text PDF

Background: Heads of Government from Asia and the Pacific have committed to a malaria-free region by 2030. In 2015, the total number of confirmed cases reported to the World Health Organization by 22 Asia Pacific countries was 2,461,025. However, this was likely a gross underestimate due in part to incidence data not being available from the wide variety of known sources.

View Article and Find Full Text PDF

Background: Plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP2) is the most accurate biomarker for severe malaria, but its measurement by ELISA has been considered too unwieldy to incorporate into clinical management.

Methods: Plasma samples covering a wide range of PfHRP2 concentrations were applied to rapid diagnostic tests (RDTs). RDTs were read by eye and digital capture, and PfHRP2 concentrations were measured via serial dilution with results compared to ELISA readings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrmdc43m3mjg3gq43ck7074mqmhjqs2j4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once