Li-S batteries with a sulphur loading content of 5 mg cm were produced as large-scale 18 650 cylindrical cells. We have found that a key failure mode of cylindrical Li-S battery cells is the severe capacity fading during the galvanostatic charge-discharge process due to the corrosion of the electrodes, the electrolyte decomposition, and the severe polysulphide shuttling effect.
View Article and Find Full Text PDFAlthough the LiMnO cathode can provide high nominal cell voltage, high thermal stability, low toxicity, and good safety in Li-ion batteries, it still suffers from capacity fading caused by the combination of structural transformation and transition metal dissolution. Herein, a carbon-coated LiMnO cathode with core@shell structure (LMO@C) was therefore produced using a mechanofusion method. The LMO@C exhibits higher cycling stability as compared to the pristine LiMnO (P-LMO) due to its high conductivity reducing impedance growth and phase transition.
View Article and Find Full Text PDFThere is a controversial issue based on the particle cracking of the Ni-rich layered oxide cathode materials whether it occurs at the primary particles or the grain boundary. Herein, we found that the microcracking of NMC811 does not occur at single crystalline primary particles even abused at a severe upper cell voltage of 4.7 V having a lot of gas evolution since the single-crystal NMC811 has superior mechanical stability.
View Article and Find Full Text PDFThe safety of Li-ion batteries is one of the most important factors, if not the most, determining their practical applications. We have found that free carbonate-based solvent molecules in the hybrid electrolyte system can cause severe safety concerns. Mixing ionic liquids with a carbonate-based solvent as the co-solvent at a fixed salt concentration of 1 M LiPF can lead to free carbonate-based molecules causing poor charge storage performance and safety concerns.
View Article and Find Full Text PDFTransport phenomena and the solvation structure of lithium ions (Li) and hexafluorophosphate anions (PF) in electrolytes with different fluoroethylene carbonate (FEC) concentrations as well as the electrochemical performance and safety of Ni-rich Li-ion battery cells at the 18650 cylindrical cell level are investigated. We have found that the electrolyte with an optimized FEC concentration (25% v/v) can effectively enhance the transport property in terms of the Li transference number and contact ion pair (CIP) ratio leading to high performance and safety of practical 18650 cylindrical LIBs.
View Article and Find Full Text PDFThe interaction between the reactive lithium metal surface and LiNO3 results in the formation of LixNOy clusters, which can protect the Li metal anode and suppress the shuttling effect of lithium polysulfides via the dipole-dipole interaction called the lithium bond.
View Article and Find Full Text PDF