Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane.
View Article and Find Full Text PDFCarefully orchestrated opening and closing of ion channels control the diffusion of ions across cell membranes, generating the electrical signals required for fast transmission of information throughout the nervous system. Inactivation is a parsimonious means for channels to restrict ion conduction without the need to remove the activating stimulus. Voltage-gated channel inactivation plays crucial physiological roles, such as controlling action potential duration and firing frequency in neurons.
View Article and Find Full Text PDFWe present an approach for preparing cryo-electron microscopy (cryo-EM) grids to study short-lived molecular states. Using piezoelectric dispensing, two independent streams of ~50-pl droplets of sample are deposited within 10 ms of each other onto the surface of a nanowire EM grid, and the mixing reaction stops when the grid is vitrified in liquid ethane ~100 ms later. We demonstrate this approach for four biological systems where short-lived states are of high interest.
View Article and Find Full Text PDFInactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present. In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency. A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a 'ball-and-chain' mechanism.
View Article and Find Full Text PDFIntegral membrane proteins have historically been challenging targets for biophysical research due to their low solubility in aqueous solution. Their importance for chemical and electrical signaling between cells, however, makes them fascinating targets for investigators interested in the regulation of cellular and physiological processes. Since membrane proteins shunt the barrier imposed by the cell membrane, they also serve as entry points for drugs, adding pharmaceutical research and development to the interests.
View Article and Find Full Text PDFThe diarrheal pathogen Vibrio cholerae navigates complex environments using three chemosensory systems and 44-45 chemoreceptors. Chemosensory cluster II modulates chemotaxis, whereas clusters I and III have unknown functions. Ligands have been identified for only five V.
View Article and Find Full Text PDFHAMP domains are dimeric, four-helix bundles that transduce conformational signals in bacterial receptors. Genetic studies of the Escherichia coli serine receptor (Tsr) provide an opportunity to understand HAMP conformational behavior in terms of functional output. To increase its stability, the Tsr HAMP domain was spliced into a poly-HAMP unit from the Pseudomonas aeruginosa Aer2 receptor.
View Article and Find Full Text PDFHAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships.
View Article and Find Full Text PDFBacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling.
View Article and Find Full Text PDFKidney anion exchanger 1 (kAE1) mediates chloride (Cl⁻) and bicarbonate (HCO₃⁻) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl⁻/HCO₃⁻ exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease--distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system.
View Article and Find Full Text PDF