Publications by authors named "Natsuko Yamagata"

The aim of this short narrative review was to evaluate the existing literature regarding the clinical use of ketamine among individuals with dementia, especially those with behavioral disturbances. PubMed, Cochrane, and Ovid (Embase, APA PsycINFO, and MEDLINE) databases were searched for abstracts using the search terms "ketamine" AND "dementia." Only articles describing the use of ketamine in individuals with dementia were included.

View Article and Find Full Text PDF

Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3.

View Article and Find Full Text PDF

The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease.

View Article and Find Full Text PDF

Enzyme-instructed self-assembly (EISA) offers a facile approach to explore the supramolecular assemblies of small molecules in cellular milieu for a variety of biomedical applications. One of the commonly used enzymes is phosphatase, but the study of the substrates of phosphatases mainly focuses on the phosphotyrosine containing peptides. In this work, we examine the EISA of phosphoserine containing small peptides for the first time by designing and synthesizing a series of precursors containing only phosphoserine or both phosphoserine and phosphotyrosine.

View Article and Find Full Text PDF
Article Synopsis
  • Most peptides usually have positive charges to help with cellular uptake, but a study found that taurine, which has negative charges, can enhance the uptake of D-peptides when linked via an ester bond.
  • Taurine promotes D-peptide self-assembly into nanofibers, reducing efflux and boosting intracellular accumulation, with evidence showing that blocking enzymes related to this process hinders uptake in mammalian cells.
  • Further research used knockout mice and Drosophila to confirm that multiple endocytosis pathways are involved in the uptake process, with electron microscopy revealing increased vesicle numbers inside cells due to the formation of aggregates at the cell surface.
View Article and Find Full Text PDF

Here we show the first example of an immunoreceptor tyrosine-based inhibitory motif (ITIM), LYYYYL, as well as its enantiomeric or retro-inverso peptide, to self-assemble in water via enzyme-instructed self-assembly. Upon enzymatic dephosphorylation, the phosphohexapeptides become hexapeptides, which self-assemble in water to result in supramolecular hydrogels. This work illustrates a new approach to design bioinspired soft materials from a less explored, but important pool of immunomodulatory peptides.

View Article and Find Full Text PDF

Selective inhibition of cancer cells remains a challenge in chemotherapy. Here we report the molecular and cellular validation of enzyme-instructed self-assembly (EISA) as a multiple step process for selectively killing cancer cells that overexpress alkaline phosphatases (ALPs). We design and synthesize two kinds of D-tetrapeptide containing one or two phosphotyrosine residues and with the N-terminal capped by a naphthyl group.

View Article and Find Full Text PDF

Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.

View Article and Find Full Text PDF