The IgG-type neutralizing GM-CSF autoantibody (GMAb) is known to be the causative agent for autoimmune pulmonary alveolar proteinosis (APAP). Previous studies report that serum levels of IgG-GMAb are approximately 50-fold higher in APAP patients than in healthy subjects (HS). Serum levels of IgM-GMAb are also higher in APAP patients than in HS, but this has been assumed to be an etiological bystander.
View Article and Find Full Text PDFPrevious studies demonstrated that antigranulocyte colony-stimulating factor autoantibody (GMAb) was consistently present in patients with autoimmune pulmonary alveolar proteinosis (aPAP), and, thus, represented candidature as a reliable diagnostic marker. However, our large cohort study suggested that the concentration of this antibody was not correlated with disease severity in patients. We found that the κ/λ ratio of GMAb was significantly correlated with the degree of hypoxemia.
View Article and Find Full Text PDFThe granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody (GMAb) is the causative agent underlying autoimmune pulmonary alveolar proteinosis (aPAP). It consists primarily of the IgG isotype. At present, information on other isotypes of the autoantibody is limited.
View Article and Find Full Text PDFBackground: Autoimmune pulmonary alveolar proteinosis (aPAP) is caused by granulocyte/macrophage-colony stimulating factor (GM-CSF) autoantibodies in the lung. Previously, we reported that GM-CSF inhalation therapy improved alveolar-arterial oxygen difference and serum biomarkers of disease severity in these patients. It is plausible that inhaled GM-CSF improves the dysfunction of alveolar macrophages and promotes the clearance of the surfactant.
View Article and Find Full Text PDFBackgrounds: Previously, we demonstrated that neutralizing capacity but not the concentration of GM-CSF autoantibody was correlated with the disease severity in patients with autoimmune pulmonary alveolar proteinosis (PAP)¹⁻³. As abrogation of GM-CSF bioactivity in the lung is the likely cause for autoimmune PAP⁴⁻⁵, it is promising to measure the neutralizing capacity of GM-CSF autoantibodies for evaluating the disease severity in each patient with PAP. Until now, neutralizing capacity of GM-CSF autoantibodies has been assessed by evaluating the growth inhibition of human bone marrow cells or TF-1 cells stimulated with GM-CSF⁶⁻⁸.
View Article and Find Full Text PDFA Xenopus laevis homolog of nucleophosmin/nucleoplasmin3 (NPM3), no29, has been previously identified as a thyroid hormone (TH)-response gene during TH-induced metamorphosis. X. laevis has another NPM3 homolog (npm3) in the pseudo-tetraploid genome, whereas X.
View Article and Find Full Text PDFHuman Mycoplasma pneumoniae (MP) pneumonia is characterized by alveolar infiltration with neutrophils and lymphocytes and lymphocyte/plasma cell infiltrates in the peri-bronchovascular area (PBVA). No mouse model has been able to mimic the pathological features seen in human MP pneumonia, such as plasma cell-rich lymphocytic infiltration in PBVA. To figure out the mechanism for inflammation by MP infection using a novel mouse model that mimics human MP pneumonia, mice were pre-immunized intraperitoneally with Th2 stimulating adjuvant, alum, alone or MP extracts with an alum, followed by intratracheal challenge with MP extracts.
View Article and Find Full Text PDFBackground: Disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signalling causes pulmonary alveolar proteinosis (PAP). Rarely, genetic defects in neonatal or infant-onset PAP have been identified in CSF2RA. However, no report has clearly identified any function-associated genetic defect in CSF2RB.
View Article and Find Full Text PDFThe aim of the project is to develop a novel method estimating granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing capacity with high-throughput and good reproducibility. For that purpose, we designed a cell-free receptor binding assay consisting of a solid-phase recombinant soluble GM-CSF receptor alpha (GMRalpha) and a biotinylated GM-CSF (bGM-CSF). Using this system, competitive inhibition of bGM-CSF binding to soluble GM-CSF receptor alpha (sGMRalpha) by GM-CSF autoantibody or IgG fractions from the sera of patients with pulmonary alveolar proteinosis was examined, resulting in excellent reproducibility.
View Article and Find Full Text PDFEmbryonic stem (ES) cells are thought to have unique chromatin structures responsible for their capacity for self-renewal and pluripotency. To examine this possibility, we sought nuclear proteins in mouse ES cells that specifically bind to histones using a pull-down assay with synthetic peptides of histone H3 and H4 tail domain as baits. Nuclear proteins preferentially bound to the latter.
View Article and Find Full Text PDF