Publications by authors named "Natsuki Morimoto"

Several immune-related genes, including Toll-like receptors (TLR), are associated with circadian rhythms in mammals. However, information on the circadian rhythmic expression of TLRs in fish is limited. In this study, we aimed to analyze the regulation of diel oscillations in the expression of TLR genes in Japanese medaka (Oryzias latipes).

View Article and Find Full Text PDF

In recent years, studies on circadian control in immunity have been actively conducted in mammals, but little is known about circadian rhythms in the field of fish immunology. In this study, we aimed to analyse the regulation of the diel oscillation of inflammatory cytokine interleukin-1β (il1b) gene expression by core components of the circadian clock in Japanese medaka (Oryzias latipes). The expression of il1b and clock genes (bmal1 and clock1) in medaka acclimated to a 12:12 light (L): dark (D) cycle showed diel rhythm.

View Article and Find Full Text PDF
Article Synopsis
  • A pseudotuberculosis pathogen, Photobacterium damselae subsp. piscicida (Pdp), is damaging yellowtail aquaculture in Japan, and the Ivy gene in its plasmid may help it evade the host's immune response.
  • Researchers studied the recombinant Ivy-Pdp protein and found it inhibits lysozyme activity, which is an immune enzyme in animals, in a concentration-dependent manner, maintaining its effectiveness under various temperatures and pH levels.
  • Ivy-Pdp was shown to significantly reduce the lytic activity of lysozyme in the serum and skin mucus of fish species like Nile tilapia, suggesting it plays a crucial role in helping Pdp evade host defenses during infection.
View Article and Find Full Text PDF

Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1).

View Article and Find Full Text PDF

ASC is a component of the inflammasome playing crucial roles in the inflammatory response. In mammals, ASC induces pyroptosis and inflammatory cytokine production. In this study, three asc genes (asc1, asc2, and asc3) from the Japanese medaka (Oryzias latipes) were identified and characterized.

View Article and Find Full Text PDF

Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a component of inflammasome, which plays crucial roles in the inflammatory response. In mammals, ASC regulates caspase-1 activation, thereby inducing pyroptosis and producing activated inflammatory cytokines. In addition, ASC also interacts with receptor-interacting protein kinase 2 (RIPK2) and induces nuclear factor-κB (NF-κB) activation.

View Article and Find Full Text PDF

In mammals, interleukin (IL)-17A and IL-17F, mainly produced by Th17 cells, are hallmark inflammatory cytokines that play important roles in the intestinal mucosal immune response. In contrast, three mammalian IL-17A and IL-17F counterparts (IL-17A/F1-3) have been identified in teleosts, and most of their functions have been described in the lymphoid organs. However, their function in the intestinal mucosal immune response is poorly understood.

View Article and Find Full Text PDF

In mammals, interleukin (IL)-17A and F are hallmark inflammatory cytokines that play key roles in protection against infection and intestinal mucosal immunity. In the gastrointestinal tract (GI), the induction of antimicrobial peptide (AMP) production via Paneth cells is a fundamental role of IL-17A and F in maintaining homeostasis of the GI microbiome and health. Although mammalian IL-17A and F homologs (referred to as IL-17A/F1-3) have been identified in several fish species, their function in the intestine is poorly understood.

View Article and Find Full Text PDF

In mammals, interleukin 17 (IL-17), which is produced mainly by Th17 cells, is a hallmark inflammatory cytokine that plays key roles in the protection against infection and intestinal mucosal immunity. The mammalian IL-17 receptor family comprises five members (IL-17RA-E). Of these, IL-17RA is important in the control of the bacterial microbiota in mucosal tissues, particularly in the intestine, where it acts as a receptor for IL-17A and -F.

View Article and Find Full Text PDF

Numerous cytosolic DNA sensors (CDSs), which are very important for recognizing cytosolic dsDNA derived from intracellular viruses and bacteria, exist in mammals. However, teleost CDSs are poorly understood. In this study, four CDSs, including the cyclic GMP-AMP synthase (cGAS), Sm-like protein 14 homolog A (LSm14A), DEAH-box helicase (DHX) 9, and DHX36 genes were identified in Japanese medaka, Oryzias latipes, and their expression patterns were elucidated.

View Article and Find Full Text PDF

Flagellin is the subunit protein that composes bacterial flagella and is recognized by toll-like receptor 5 (TLR5) as a ligand. Flagellin protein (e.g.

View Article and Find Full Text PDF

Pseudotuberculosis caused by infection of subsp. has caused serious economic damages to aquaculture farms worldwide. Here, the whole-genome sequence of subsp.

View Article and Find Full Text PDF