Publications by authors named "Natolya Barber"

Scanning transmission electron microscopy (STEM), where a converged electron probe is scanned over a sample's surface and an imaging, diffraction, or spectroscopic signal is measured as a function of probe position, is an extremely powerful tool for materials characterization. The widespread adoption of hardware aberration correction, direct electron detectors, and computational imaging methods have made STEM one of the most important tools for atomic-resolution materials science. Many of these imaging methods rely on accurate imaging and diffraction simulations in order to interpret experimental results.

View Article and Find Full Text PDF