Publications by authors named "Natividad Gomez-Cerezo"

Article Synopsis
  • - The study addresses the challenge of CO valorization, a significant contributor to climate change, by synthesizing nanostructured indium oxide materials with varying cobalt (Co) concentrations (2-8% mol).
  • - The most effective catalyst for converting carbon dioxide to carbon monoxide contains 6% mol Co and shows over a 30% increase in activity under dual excitation compared to thermal methods.
  • - A detailed characterization reveals that lower Co concentrations lead to isolated single atoms, while higher concentrations result in Co-Co interactions, impacting the catalyst's performance and paving the way for optimizing CO2 photothermal utilization.
View Article and Find Full Text PDF

The synthesis and properties of stoichiometric, reduced, and Co-doped InO are described in the light of several experimental techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)-visible spectroscopy, porosimetry, and density functional theory (DFT) methods on appropriate models. DFT-based calculations provide an accurate prediction of the atomic and electronic structure of these systems. The computed lattice parameter is linearly correlated with the experimental result in the Co concentration ranging from 1.

View Article and Find Full Text PDF

The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue.

View Article and Find Full Text PDF

In order to increase the bone forming ability of MBG-PCL composite scaffold, microporosity was created in the struts of 3D-printed MBG-PCL scaffolds for the manufacturing of a construct with a multiscale porosity consisting of meso- micro- and macropores. 3D-printing imparted macroporosity while the microporosity was created by porogen removal from the struts, and the MBG particles were responsible for the mesoporosity. The scaffolds were 3D-printed using a mixture of PCL, MBG and phosphate buffered saline (PBS) particles, subsequently leached out.

View Article and Find Full Text PDF

The incorporation and effects of hollow mesoporous nanospheres in the system SiO-CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC-nanoMBGs).

View Article and Find Full Text PDF

Three-dimensional Mesoporous bioactive glasses (MBGs) scaffolds has been widely considered for bone regeneration purposes and additive manufacturing enables the fabrication of highly bioactive patient-specific constructs for bone defects. Commonly, this process is performed with the addition of polymeric binders that facilitate the printability of scaffolds. However, these additives cover the MBG particles resulting in the reduction of their osteogenic potential.

View Article and Find Full Text PDF

Mesoporous nanospheres in the system SiO-CaO (NanoMBGs) with a hollow core surrounded by a radial arrangement of mesopores were characterized, labeled with FITC (FITC-NanoMBGs) and loaded with ipriflavone (NanoMBG-IPs) in order to evaluate their incorporation and their effects on both osteoblasts and osteoclasts simultaneously and maintaining the communication with each other in coculture. The influence of these nanospheres on macrophage polarization towards pro-inflammatory M1 or reparative M2 phenotypes was also evaluated in basal and stimulated conditions through the expression of CD80 (as M1 marker) and CD206 (as M2 marker) by flow cytometry and confocal microscopy. NanoMBGs did not induce the macrophage polarization towards the M1 pro-inflammatory phenotype, favoring the M2 reparative phenotype and increasing the macrophage response capability against stimuli as LPS and IL-4.

View Article and Find Full Text PDF

An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies.

View Article and Find Full Text PDF

Unlabelled: Silica mesoporous nanomaterials have been proved to have meaningful application in biotechnology and biomedicine. Particularly, mesoporous bioactive glasses are recently gaining importance thanks to their bone regenerative properties. Moreover, the mesoporous nature of these materials makes them suitable for drug delivery applications, opening new lines in the field of bone therapies.

View Article and Find Full Text PDF