Publications by authors named "Natisha L Rose"

The homologous glycosyltransferases α-1,3-N-acetylgalactosaminyltransferase (GTA) and α-1,3-galactosyltransferase (GTB) carry out the final synthetic step of the closely related human ABO(H) blood group A and B antigens. The catalytic mechanism of these model retaining enzymes remains under debate, where Glu303 has been suggested to act as a putative nucleophile in a double displacement mechanism, a local dipole stabilizing the intermediate in an orthogonal associative mechanism or a general base to stabilize the reactive oxocarbenium ion-like intermediate in an SNi-like mechanism. Kinetic analysis of GTA and GTB point mutants E303C, E303D, E303Q and E303A shows that despite the enzymes having nearly identical sequences, the corresponding mutants of GTA/GTB have up to a 13-fold difference in their residual activities relative to wild type.

View Article and Find Full Text PDF

As a key constituent of their protective cell wall all mycobacteria produce a large structural component, the mycolyl-arabinogalactan (mAG) complex, which has at its core a galactan moiety of alternating beta-(1-->5) and beta-(1-->6) galactofuranosyl residues. Galactan biosynthesis is essential for mycobacterial viability and thus inhibitors of the enzymes involved in its assembly are potential drugs for the treatment of mycobacterial diseases, including tuberculosis. Only two galactofuranosyltransferases, GlfT1 and GlfT2, are responsible for the biosynthesis of the entire galactan domain of the mAG and we report here the first high-throughput assay for GlfT2.

View Article and Find Full Text PDF

Two galactosyl transferases can apparently account for the full biosynthesis of the cell wall galactan of mycobacteria. Evidence is presented based on enzymatic incubations with purified natural and synthetic galactofuranose (Galf) acceptors that the recombinant galactofuranosyl transferase, GlfT1, from Mycobacterium smegmatis, the Mycobacterium tuberculosis Rv3782 ortholog known to be involved in the initial steps of galactan formation, harbors dual beta-(1-->4) and beta-(1-->5) Galf transferase activities and that the product of the enzyme, decaprenyl-P-P-GlcNAc-Rha-Galf-Galf, serves as a direct substrate for full polymerization catalyzed by another bifunctional Galf transferase, GlfT2, the Rv3808c enzyme.

View Article and Find Full Text PDF

The major structural component of the cell wall of Mycobacterium tuberculosis is a lipidated polysaccharide, the mycoyl-arabinogalactan-peptidoglycan (mAGP) complex. This glycoconjugate plays a key role in the survival of the organism, and thus, enzymes involved in its biosynthesis have attracted attention as sites for drug action. At the core of the mAGP is a galactan composed of D-galactofuranose residues attached via alternating beta-(1-->5) and beta-(1-->6) linkages.

View Article and Find Full Text PDF

The human ABO(H) blood group A and B antigens are generated by the homologous glycosyltransferases A (GTA) and B (GTB), which add the monosaccharides GalNAc and Gal, respectively, to the cell-surface H antigens. In the first comprehensive structural study of the recognition by a glycosyltransferase of a panel of substrates corresponding to acceptor fragments, 14 high resolution crystal structures of GTA and GTB have been determined in the presence of oligosaccharides corresponding to different segments of the type I (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->3)-beta-D-GlcNAcp-OR, where R is a glycoprotein or glycolipid in natural acceptors) and type II (alpha-l-Fucp-(1-->2)-beta-D-Galp-(1-->4)-beta-d-GlcNAcp-OR) H antigen trisaccharides. GTA and GTB differ in only four "critical" amino acid residues (Arg/Gly-176, Gly/Ser-235, Leu/Met-266, and Gly/Ala-268).

View Article and Find Full Text PDF

Background: Few studies have investigated the reaction kinetics and interactions with nucleotide donor and acceptor substrates of mutant human ABO glycosyltransferases. Previous work identified a B(w) allele featuring a 556G>A polymorphism giving rise to a weak B phenotype. This polymorphism is predicted to cause a M186V amino-acid mutation within a highly conserved series of 16 amino acids present both in both blood group A- and blood group B-synthesizing enzymes.

View Article and Find Full Text PDF

Despite advances in human islet isolation, islet yield remains inconsistent and unreliable. In recent studies, it has been suggested that serine proteases, in particular trypsin, have been shown to have a damaging effect on islet yield. This study evaluated enzyme activity levels throughout 42 human islet isolation procedures.

View Article and Find Full Text PDF

Despite advances in human islet isolation, islet yield remains inconsistent and unreliable. In recent studies, it has been suggested that serine proteases, in particular trypsin, have been shown to have a damaging effect on islet yield. This study evaluated enzyme activity levels throughout 42 human islet isolation procedures.

View Article and Find Full Text PDF

Introduction: Recent evidence has suggested that inconsistencies in human islet yield and viability after collagenase digestion is attributed to the activation of endogenous enzymes of the cadaveric donor pancreas. A study of the enzyme kinetics of serine proteases throughout human islet isolations showed a significant increase in activity levels throughout the digestion period. Following the digestion, it is important to further inhibit these enzymes by the addition of an inhibitor to the dilution media.

View Article and Find Full Text PDF

Nisin variants and fragments were reacted with glutathione, and the products of the reactions were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography/mass spectrometry (LC-MS). Reactions between glutathione and either [Ala5]nisin or [Ala33]nisin resulted in products with two glutathione molecules conjugated to one nisin variant molecule. Only one glutathione molecule was added to [Ala5,Ala33]nisin.

View Article and Find Full Text PDF

Background: Recent evidence has suggested that inconsistencies in human-islet yields after collagenase digestion are attributed to the activation of endogenous enzymes of the cadaveric donor pancreas. Inhibition of protease activity by Pefabloc (0.4 mM; Roche Biochemicals Inc.

View Article and Find Full Text PDF

Inconsistencies in human islet yields after collagenase digestion have been attributed to the activation of endogenous enzymes of the donor pancreas. It has been suggested that pancreatic serine proteases contribute to the proteolysis of collagenase. This study defined the effects of endogenous enzymes within the pancreas on pancreas dissociation during collagenase digestion.

View Article and Find Full Text PDF

Inconsistencies in human islet yields after collagenase digestion have been attributed to the activation of endogenous enzymes of the donor pancreas. It has been suggested that pancreatic serine proteases contribute to the proteolysis of collagenase. This study defined the effects of endogenous enzymes within the pancreas on pancreas dissociation during collagenase digestion.

View Article and Find Full Text PDF