Respiratory syncytial (RSV) and parainfluenza (PIV) viruses are primary causes of acute bronchiolitis and wheezing illnesses in infants and young children. To further understand inflammation in the airways following infection, we tested for the presence of matrix metalloproteinases (MMP) and natural tissue inhibitors of MMP (TIMP) in primary and established human cell lines, and in the nasopharyngeal secretions (NPS) of human infants infected with RSV or PIV. Using ELISA and multiplex-based assays, MMP-9 and TIMP-1 proteins were, respectively, detected in 66/67 and 67/67 NPS.
View Article and Find Full Text PDFIt is essential that preventative vaccines for respiratory syncytial virus (RSV) elicit balanced T-cell responses. Immune responses dominated by type 2 T cells against RSV antigens are believed to cause exaggerated respiratory tract disease and may also contribute to unwanted inflammation in the airways that predisposes infants to wheeze through adolescence. Here we report on the construction and characterization of recombinant RSV (rRSV) strains with amino acids 151 to 221 or 178 to 219 of the attachment (G) glycoprotein deleted (rA2cpDeltaG150-222 or rA2cpDeltaG177-220, respectively).
View Article and Find Full Text PDFThe design of attenuated vaccines for respiratory syncytial virus (RSV) historically focused on viruses made sensitive to physiologic temperature through point mutations in the genome. These prototype vaccines were not suitable for human infants primarily because of insufficient attenuation, genetic instability, and reversion to a less-attenuated phenotype. We therefore sought to construct novel attenuated viruses with less potential for reversion through genetic alteration of the attachment G protein.
View Article and Find Full Text PDFJ Med Virol
June 2003
Development of subunit vaccines against respiratory syncytial virus (RSV) for naive human infants is hindered by concerns that immunization with the fusion or attachment (G) proteins will elicit polarized Type 2 T cell responses and cause immunopotentiation upon subsequent natural infection. We investigated the regions of G protein responsible for inducing a Type 2 T cell phenotype in inbred mice of different MHC haplotype toward development of vaccines with improved safety. As demonstrated by IL-5-dependent pulmonary eosinophilia after challenge and serum anti-G protein IgG1 to IgG2 ratios, highly purified native G protein sensitized all strains for a Type 2 T cell phenotype.
View Article and Find Full Text PDF