Publications by authors named "Natilie Hosea"

Article Synopsis
  • The study investigated the impact of dexamethasone alongside the gamma secretase inhibitor (GSI), PF-03084014, on goblet cell hyperplasia (GCH) in the intestines of Sprague-Dawley rats.
  • Two dosing regimens were analyzed: a pretreatment with dexamethasone followed by GSI, and concurrent intermittent treatment with both substances.
  • Results showed that dexamethasone reduced the severity of GCH temporarily, but there were safety concerns, including morbidity and mortality linked to high doses of GSI and dexamethasone coadministration.
View Article and Find Full Text PDF

N-(Pyridin-2-yl) arylsulfonamides 1 and 2 (PF-915275) were identified as potent inhibitors of 11β-hydroxysteroid dehydrogenase type 1. A screen for bioactivation revealed that these compounds formed glutathione conjugates. This communication presents the results of a risk benefit analysis carried out to progress 2 (PF-915275) to a clinical study and the strategies used to eliminate reactive metabolites in this series of inhibitors.

View Article and Find Full Text PDF

Background: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery.

Results: Here we report changes in the genome-wide AR binding landscape due to dose-dependent inhibition by drug-like small molecules using ChIP-Seq.

View Article and Find Full Text PDF

High throughput cell-based screening led to the identification of 3-aryloxy lactams as potent androgen receptor (AR) antagonists. Refinement of these leads to improve the ADME profile and remove residual agonism led to the discovery of 12, a potent full antagonist with greater oral bioavailability. Improvements in the ADME profile were realized by designing more ligand-efficient molecules with reduced molecular weights and lower lipophilicities.

View Article and Find Full Text PDF

An aryloxy tetramethylcyclobutane was identified as a novel template for androgen receptor (AR) antagonists via cell-based high-throughput screening. Follow-up to the initial "hit" established 5 as a viable lead. Further optimization to achieve full AR antagonism led to the discovery of 26 and 30, both of which demonstrated excellent in vivo tumor growth inhibition upon oral administration in a castration-resistant prostate cancer (CRPC) animal model.

View Article and Find Full Text PDF

Background: The importance of predicting human pharmacokinetics during compound selection has been recognized in the pharmaceutical industry. To this end there are many different approaches that are applied.

Methods: In this study we compared the accuracy of physiologically based pharmacokinetic (PBPK) methodologies implemented in GastroPlus™ with the one-compartment approach routinely used at Pfizer for human pharmacokinetic plasma concentration-time profile prediction.

View Article and Find Full Text PDF

Quantitative human pharmacokinetic (PK) predictions play a critical role in assessing the quality of potential drug candidates and in selecting a human starting dose for clinical evaluation, where the parameters of clearance, volume of distribution, and bioavailability as well as the plasma concentration time profiles are the desired endpoints. While there are numerous reports validating the use of different methods for predictions, it still remains an open question as to what animal species to include when extrapolating the animal PK to human. Given toxicological assessment is generally conducted in two species, a rodent and a non-rodent species, prior to evaluation in human subjects, rat, dog and/or monkey are typically the species ADME scientists employ to evaluate PK.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant Notch signaling is linked to cancer development, particularly in T-cell acute lymphoblastic leukemia (T-ALL), making gamma-secretase a key target for cancer therapy.
  • PF-03084014, a selective gamma-secretase inhibitor, effectively reduces the Notch intracellular domain (NICD) levels and inhibits tumor cell growth, leading to cell cycle arrest and apoptosis in T-ALL cell lines.
  • Studies also indicated that PF-03084014 has broad antitumor effects in various models while minimizing gastrointestinal toxicity, making it a promising candidate for treating Notch-dependent cancers, and it is currently in phase I clinical trials.
View Article and Find Full Text PDF

The design and development of a series of highly selective pyrrolidine carboxamide 11beta-HSD1 inhibitors are described. These compounds including PF-877423 demonstrated potent in vitro activity against both human and mouse 11beta-HSD1 enzymes. In an in vivo assay, PF-877423 inhibited the conversion of cortisone to cortisol.

View Article and Find Full Text PDF

N-(Pyridin-2-yl) arylsulfonamides are identified as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1), an enzyme that catalyzes the reduction of the glucocorticoid cortisone to cortisol. Dysregulation of glucocorticoids has been implicated in the pathogenesis of diabetes and the metabolic syndrome. In this Letter, we present the development of an initial lead to an efficient ligand with improved physiochemical properties using a deletion strategy.

View Article and Find Full Text PDF

Quantitative prediction of human pharmacokinetics is critical in assessing the viability of drug candidates and in determining first-in-human dosing. Numerous prediction methodologies, incorporating both in vitro and preclinical in vivo data, have been developed in recent years, each with advantages and disadvantages. However, the lack of a comprehensive data set, both preclinical and clinical, has limited efforts to evaluate the optimal strategy (or strategies) that results in quantitative predictions of human pharmacokinetics.

View Article and Find Full Text PDF

Glucocorticoids, through activation of the glucocorticoid receptor (GR), regulate hepatic gluconeogenesis. Elevated hepatic expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) play a key role in ligand-induced activation of the GR through the production of cortisol. Evidence from genetically modified mice suggests that inhibition of 11betaHSD1 might be a therapeutic approach to treat the metabolic syndrome.

View Article and Find Full Text PDF

This study was designed to evaluate the use of cerebrospinal fluid (CSF) drug concentration and plasma unbound concentration (C(u,plasma)) to predict brain unbound concentration (C(u,brain)). The concentration-time profiles in CSF, plasma, and brain of seven model compounds were determined after subcutaneous administration in rats. The C(u,brain) was estimated from the product of total brain concentrations and unbound fractions, which were determined using brain tissue slice and brain homogenate methods.

View Article and Find Full Text PDF

This study was designed 1) to examine the effects of blood-brain barrier (BBB) permeability [quantified as permeability-surface area product (PS)], unbound fraction in plasma (f(u,plasma)), and brain tissue (f(u,brain)) on the time to reach equilibrium between brain and plasma and 2) to investigate the drug discovery strategies to design and select compounds that can rapidly penetrate the BBB and distribute to the site of action. The pharmacokinetics of seven model compounds: caffeine, CP-141938 [methoxy-3-[(2-phenyl-piperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide], fluoxetine, NFPS [N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine], propranolol, theobromine, and theophylline in rat brain and plasma after subcutaneous administration were studied. The in vivo log PS and log f(u,brain) calculated using a physiologically based pharmacokinetic model correlates with in situ log PS (R(2) = 0.

View Article and Find Full Text PDF

Thirty-two structurally diverse drugs used for the treatment of various conditions of the central nervous system (CNS), along with two active metabolites, and eight non-CNS drugs were measured in brain, plasma, and cerebrospinal fluid in the P-glycoprotein (P-gp) knockout mouse model after subcutaneous administration, and the data were compared with corresponding data obtained in wild-type mice. Total brain-to-plasma (B/P) ratios for the CNS agents ranged from 0.060 to 24.

View Article and Find Full Text PDF

The objective of this review is to evaluate the risks associated with the discovery and development of cytochrome p450 (CYP) 3A substrates. CYP3A is the most abundant p450 enzyme in human liver and is highly expressed in the intestinal tract. The enzyme contributes substantially to metabolism of approximately 50% of currently marketed drugs that undergo oxidative metabolism.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongfidno9sq4kgl7toq82rcesmh6bn8oal): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once