Publications by authors named "Nathdanai Harnkarnsujarit"

The development of biodegradable active packaging is a relevant topic demanding the development of film properties, biodegradability, and the potential to preserve food quality. This study aimed to develop thermoplastic starch (TPS) blended with polybutylene adipate-co-terephthalate (PBAT) films via blown-film extrusion containing ascorbyl palmitate (AP) and sodium ascorbyl phosphate (SAP) as antioxidants. The morphology, mechanism, and barrier and antioxidant properties of the films were analyzed to determine the presence of AP, SAP, and their interaction effect on the film properties.

View Article and Find Full Text PDF

Phosphate derivatives contain a high number of reactive groups that interact functionally with various polymers. Tetrasodium pyrophosphate (Na₄P₂O₇), sodium tripolyphosphate (Na₅P₃O₁₀), and sodium hexametaphosphate (Na₆(PO₃)₆) were incorporated into bioplastic polybutylene-adipate-terephthalate (PBAT) blended with thermoplastic cassava starch (TPS) in blown films. Their physicochemical, morphological, thermal, and antimicrobial properties were investigated.

View Article and Find Full Text PDF

Maltol (MT) and ethyl maltol (EM) are flavoring compounds that release vapors into headspace, exerting antimicrobial effects and extending food shelf-life. This study investigated biodegradable films for packaged bakery quality. Biodegradable films (40 % polybutylene adipate terephthalate and 60 % thermoplastic starch) were produced via extrusion for films with varying MT and EM contents (1, 3, and 5 %).

View Article and Find Full Text PDF

Water-repellent coatings are essential for enhancing the durability and sustainability of textiles, paper, and bioplastic polymers. Despite the growing use of sustainable materials, their inherent hydrophilicity presents significant challenges. This review explores advanced coating technologies to address these issues, focusing on their mechanisms, properties, and applications.

View Article and Find Full Text PDF

Extrusion processing of plasticized cassava starch, a prominent industrial crop, with chemical additives offers a thermo-mechanical approach to modify starch structures through physical and chemical interactions. This research investigates the interaction and morphology of thermoplastic cassava starch (TPS) blended with tetrasodium pyrophosphate (NaPO), sodium tripolyphosphate (NaPO), sodium hexametaphosphate (Na(PO)), sodium erythorbate (CHONa), and sodium nitrite (NaNO) via twin-screw extrusion. The effects of these additives on the chemical structure, thermal profile, water absorption, and solubility of the TPS were examined.

View Article and Find Full Text PDF

Meat quality and shelf life are important parameters affecting consumer perception and safety. Several factors contribute to the deterioration and spoilage of meat products, including microbial growth, chemical reactions in the food's constituents, protein denaturation, lipid oxidation, and discoloration. This study reviewed the development of functional packaging biomaterials that interact with food and the environment to improve food's sensory properties and consumer safety.

View Article and Find Full Text PDF

Active packaging relies on controlled release of antimicrobials for food protection; however, uncontrolled migration due to environmental factors poses safety and functionality challenges. This study investigated the stability of zinc oxide nanoparticle (ZnONP) in poly(butylene-adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) biopolymer film for active food packaging applications. While incorporating ZnONP significantly enhanced the properties and active functionalities (UV-light blocking, antimicrobial activity) of PBAT/TPS film, food simulants posed significant stability challenges.

View Article and Find Full Text PDF

green seaweed is an abundant biomass consisting of polysaccharides and protein mixtures and a potential bioresource for bioplastic food packaging. This research prepared and characterized novel biodegradable films from extracts. The water-soluble fraction of was extracted and prepared into bioplastic films.

View Article and Find Full Text PDF

Improved miscibility between thermoplastic starch (TPS) and polybutylene adipate-co-terephthalate (PBAT) enhances processability and properties of TPS-based biodegradable plastic packaging. This research investigated compatibility and functionality of TPS/PBAT (50/50) blends with sodium nitrite and sodium erythorbate (1-5%) via blown film extrusion. Film morphology and mechanical and barrier properties were investigated.

View Article and Find Full Text PDF

Packaging is one of the major domains in the food processing industry that reduces waste and enhances product shelf life. Recently, research and development have focused on bioplastics and bioresources to combat environmental issues caused by the alarming growth of single-use plastic waste food packaging. The demand for natural fibres has recently increased because of their low cost, biodegradability and eco-friendliness.

View Article and Find Full Text PDF

Waste management in the agricultural sector has become a major concern. Increased food production to satisfy the surge in population has resulted in the generation of large volumes of solid waste. Agro-waste is a rich source of biocompounds with high potential as a raw material for food packaging.

View Article and Find Full Text PDF

Maltol is widely used as a flavor enhancer in baked goods and has an antimicrobial function. Maltol can also be incorporated into biopolymer films to produce active biodegradable packaging for bakery products. This research investigated the incorporation of 1-10% maltol into acetylated cassava starch films as functional packaging for shelf-life extension of butter cake.

View Article and Find Full Text PDF

Biodegradable polyesters polybutylene succinate (PBS) and polybutylene adipate-co-terephthalate (PBAT) were blended with gallic acid (GA) via cast extrusion to produce oxygen scavenging polymers. The effects of polyesters and GA contents (5 to 15%) on polymer/package properties were investigated. Increasing GA formed non-homogeneous microstructures and surface roughness due to immiscibility.

View Article and Find Full Text PDF

Hemp ( Linn) is a high-yielding annual crop farmed for its stalk fiber and oil-producing seeds. This specialized crop is currently experiencing a revival in production. Hemp fiber contains pectin, hemicellulose and lignin with superior strength, while hemp seed oil contains unsaturated triglycerides with well-established nutritional and physiological properties.

View Article and Find Full Text PDF

Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet.

View Article and Find Full Text PDF

Polymeric materials including plastic and paper are commonly used as packaging for bakery products. The incorporation of active substances produces functional polymers that can effectively retain the quality and safety of packaged products. Polymeric materials can be used to produce a variety of package forms such as film, tray, pouch, rigid container and multilayer film.

View Article and Find Full Text PDF

Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied.

View Article and Find Full Text PDF

Biodegradable polymers typically have inferior barrier properties compared to petroleum-based nonbiodegradable plastic. The addition of zinc oxide nanoparticles may enhance the functional properties of biodegradable packaging and extends the shelf life of packaged foods. Polybutylene adipate-co-terephthalate (PBAT) and thermoplastic starch (TPS) blended ZnO (1-5%) nanocomposite films were developed via blown extrusion for functional active meat packaging.

View Article and Find Full Text PDF

Biodegradable polymers can be used for eco-friendly, functional, active packaging to preserve food quality. Incorporation of titanium dioxide (TiO) nanoparticles into polymer packaging enhances ethylene-scavenging activity and extends the shelf-life of fresh produce. In this study, TiO nanoparticles were incorporated into biodegradable poly(butylene adipate-co-terephthalate) (PBAT)- and thermoplastic cassava starch (TPS)-blended films to produce nanocomposite packaging via blown-film extrusion.

View Article and Find Full Text PDF

Functional bioplastic packaging was produced from thermoplastic starch (TPS) with nitrite (1-5%) and polybutylene adipate terephthalate (PBAT) (PBAT/TPS at 30/70 and 40/60) via blown-film extrusion. TPS-nitrite interaction increased thermal destabilization and decreased α-relaxation temperature of TPS phase, indicating improved plasticization and disruption of starch granules. Nitrite modified C=O bonding of PBAT and improved compatibility with TPS networks, resulting in compact microstructures that reduced oxygen and water vapor permeability.

View Article and Find Full Text PDF

Biodegradable active packaging was produced by compounding nisin (3, 6 and 9%) and nisin-ethylenediaminetetraacetic acid (EDTA) (3 and 6%) mixtures with poly(butylene adipate terephthalate) and thermoplastic starch blends (PBAT/TPS) by blown-film extrusion. Nisin and EDTA interacted with polymers, involving CO stretching of ester bonds and increased compatibility. This plasticized the films and modified the crystallinity, surface roughness and thermal relaxation behavior.

View Article and Find Full Text PDF

Biodegradable poly(butylene adipate terephthalate) and poly(lactic acid) (PBAT/PLA) blend films compounded with carvacrol, citral and α-terpineol essential oils (EOs) were produced for food packaging via blown-film extrusion. PBAT/PLA interacted with citral and α-terpineol via hydrogen bonding and carbonyl groups. Microstructures and barrier properties against water vapor and oxygen were modified depending on types and concentrations (3% and 6%) of EOs.

View Article and Find Full Text PDF

Nitrite (0.25-2%) incorporated thermoplastic starch (TPS) and linear low-density polyethylene (LLDPE) blend films were produced by the conventional blown-film extrusion process. Films were characterized and determined for efficacy as active packaging for pork steak.

View Article and Find Full Text PDF

Antifungal bioplastic films were developed based on poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) blends as PLA60/PBAT40 (PLA/PBAT) and PBAT60/PLA40 (PBAT/PLA) with incorporated trans-cinnamaldehyde using cast-extrusion. Trans-cinnamaldehyde was more compatible in PLA which exhibited plasticization that increased molecular mobility, crystallinity, permeability but limited volatile release and reduced film strength. Interaction of trans-cinnamaldehyde modified CO functional groups of PLA and PBAT.

View Article and Find Full Text PDF

Biopolymer blend interactions influence the physical, mechanical and barrier properties of edible packaging. Starch (rice and hydroxypropyl cassava starch mixture), agar and maltodextrin were formulated to control the solubility of edible films. Blend materials were characterized for fluid rheology, solid microstructure, mechanical barrier and physical properties.

View Article and Find Full Text PDF