Publications by authors named "Nathaniel Wright"

Carbic anhydride is an underappreciated starting material for 3D-printable, non-hydrogel photopolymers. Compared with other norbornene precursors, carbic anhydride is cheaper and reactive via aminolysis. As a result, the generalized and efficient functionalization with carbic anhydride can increase the utilization of thiol-norbornene photopolymers.

View Article and Find Full Text PDF

Numerous studies have shown that neuronal representations in sensory pathways are far from static but are instead strongly shaped by the complex properties of the sensory inputs they receive. Adaptation dynamically shapes the neural signaling that underlies our perception of the world yet remains poorly understood. We investigated rapid adaptation across timescales from hundreds of milliseconds to seconds through simultaneous multi-electrode recordings from the ventro-posteromedial nucleus of the thalamus (VPm) and layer 4 of the primary somatosensory cortex (S1) in male and female anesthetized mice in response to controlled, persistent whisker stimulation.

View Article and Find Full Text PDF

Germinal center (GC) B cells segregate into three subsets that compartmentalize the antagonistic molecular programs of selection, proliferation, and somatic hypermutation. In bone marrow, the epigenetic reader BRWD1 orchestrates and insulates the sequential stages of cell proliferation and recombination. We hypothesized BRWD1 might play similar insulative roles in the periphery.

View Article and Find Full Text PDF

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony.

View Article and Find Full Text PDF

Although the male epididymal fat pad is an effective site for islet transplantation, females lack this tissue. Here, we present a protocol to assess the parametrial fat pad (PFP) adjacent to the uterine horn in females as an alternative site for islet transplantation. We describe steps for islet isolation from the pancreas, counting, transplantation into PFP, and monitoring for engraftment.

View Article and Find Full Text PDF

Transdermal delivery is an attractive delivery method that increases bioavailability, is suitable for a wide variety of therapeutics, and offers stable delivery outcomes. However, many therapeutics are unable to readily cross the stratum corneum. Microneedles mechanically disrupt the cutaneous barrier to deliver small molecules, proteins, and vaccines.

View Article and Find Full Text PDF

Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear.

View Article and Find Full Text PDF

In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation.

View Article and Find Full Text PDF

The feedback projections from cortical layer 6 (L6CT) to sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventro-posterior-medial nucleus of thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony.

View Article and Find Full Text PDF

Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs).

View Article and Find Full Text PDF

Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform to compare 5 bone morphogenetic proteins (BMPs) for promoting bone defect healing in a critical sized calvarial defect model.

View Article and Find Full Text PDF

The thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior-medial thalamus in the vibrissa pathway of the awake mouse and measured spiking activity in the thalamus and activity in primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging.

View Article and Find Full Text PDF
Article Synopsis
  • The glycoproteins and proteoglycans found in the cellular glycocalyx and extracellular matrix are crucial for various life functions, prompting interest in synthetic mimics for biomedicine.
  • Researchers developed a one-pot dual-catalysis polymerization method to create grafting-from glycopolypeptide brushes, allowing for precise control over their chemical properties and structures.
  • These new glycobrushes, which are non-toxic and degradable, can be applied to live human cells, enabling studies on glycan presentation and the effects of multivalency in biological systems.
View Article and Find Full Text PDF

Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing.

View Article and Find Full Text PDF

BACKGROUNDTo understand the features of a replicating vaccine that might drive potent and durable immune responses to transgene-encoded antigens, we tested a replication-competent adenovirus type 4 encoding influenza virus H5 HA (Ad4-H5-Vtn) administered as an oral capsule or via tonsillar swab or nasal spray.METHODSViral shedding from the nose, mouth, and rectum was measured by PCR and culturing. H5-specific IgG and IgA antibodies were measured by bead array binding assays.

View Article and Find Full Text PDF

Background: Whole-cell patch-clamp recording in vivo is the gold-standard method for measuring subthreshold electrophysiology from single cells during behavioural tasks, sensory stimulations, and optogenetic manipulation. However, these recordings require a tight, gigaohm resistance, seal between a glass pipette electrode's aperture and a cell's membrane. These seals are difficult to form, especially in vivo, in part because of a strong dependence on the distance between the pipette aperture and cell membrane.

View Article and Find Full Text PDF

African American (AA) men experience more than twice the prostate cancer mortality as White men yet are under-represented in academic research involving prostate-specific antigen (PSA), a biomarker of prostate cancer aggressiveness. We examined the impact of self-reported tobacco (cigarette pack-years and current tobacco use including e-cigarettes) and current regular marijuana use on serum PSA level based on clinical laboratory testing among 928 AA men interviewed 2013-2018 in Chicago. We defined outcome of elevated PSA ≥ 4.

View Article and Find Full Text PDF

Objectives: The aims of this study were to test the magnitude of agreement between echocardiography (echo)- and cardiac magnetic resonance (CMR)-derived left atrial (LA) strain and to study their relative diagnostic performance in discriminating diastolic dysfunction (DD) and predicting atrial fibrillation (AF).

Backgrounds: Peak atrial longitudinal strain (PALS) is a novel performance index. Utility of echo-quantified LA strain has yet to be prospectively tested in relation to current DD guidelines or compared to CMR.

View Article and Find Full Text PDF

The trial-to-trial response variability in sensory cortices and the extent to which this variability can be coordinated among cortical units have strong implications for cortical signal processing. Yet, little is known about the relative contributions and dynamics of defined sources to the cortical response variability and their correlations across cortical units. To fill this knowledge gap, here we obtained and analyzed multisite local field potential (LFP) recordings from visual cortex of turtles in response to repeated naturalistic movie clips and decomposed cortical across-trial LFP response variability into three defined sources, namely, input, network, and local fluctuations.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (PDCs) and their production of interferon-alpha (IFN-α) are believed to play an important role in human immunodeficiency virus, type I (HIV-1) pathogenesis. PDCs produce IFN-α and other proinflammatory cytokines through stimulation of Toll-like receptor 7 (TLR7) and TLR9 present in endosomal compartments. TLR7 recognizes single-stranded viral RNA, while TLR9 recognizes unmethylated DNA.

View Article and Find Full Text PDF

What information single neurons receive about general neural circuit activity is a fundamental question for neuroscience. Somatic membrane potential () fluctuations are driven by the convergence of synaptic inputs from a diverse cross-section of upstream neurons. Furthermore, neural activity is often scale-free, implying that some measurements should be the same, whether taken at large or small scales.

View Article and Find Full Text PDF

The three-layered visual cortex of turtle is characterized by extensive intracortical axonal projections and receives non-retinotopic axonal projections from lateral geniculate nucleus. What spatiotemporal transformation of visual stimuli into cortical activity arises from such tangle of malleable cortical inputs and intracortical connections? To address this question, we obtained band-pass filtered extracellular recordings of neural activity in turtle dorsal cortex during visual stimulation of the retina. We discovered important spatial and temporal features of stimulus-modulated cortical local field potential (LFP) recordings.

View Article and Find Full Text PDF

Cortical activity contributes significantly to the high variability of sensory responses of interconnected pyramidal neurons, which has crucial implications for sensory coding. Yet, largely because of technical limitations of in vivo intracellular recordings, the coupling of a pyramidal neuron's synaptic inputs to the local cortical activity has evaded full understanding. Here we obtained excitatory synaptic conductance ( g) measurements from putative pyramidal neurons and local field potential (LFP) recordings from adjacent cortical circuits during visual processing in the turtle whole brain ex vivo preparation.

View Article and Find Full Text PDF

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina.

View Article and Find Full Text PDF