Publications by authors named "Nathaniel Wallace"

A new series of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as dual inhibitors of sodium glucose co-transporter proteins (SGLTs) were disclosed. Two methods were developed to efficiently synthesize C-fluoro-lactones 3 and 4, which are key intermediates to the C-fluoro-hexose based C-aryl glucosides. Compound 2b demonstrated potent hSGLT1 and hSGLT2 inhibition (IC = 43 nM for SGLT1 and IC = 9 nM for SGLT2).

View Article and Find Full Text PDF

Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors are described. Compound 19 showed high inhibitory potency at SGLT1 (IC = 45 nM), and excellent potency at SGLT2 (IC = 1 nM). It also displayed excellent PK profiles in mice, rats, dogs and monkeys (F = 78-107%).

View Article and Find Full Text PDF

A novel series of benzyl substituted thieno[2,3-d]pyrimidines were identified as potent A2A receptor antagonists. Several five- and six-membered heterocyclic replacements for the optimized methylfuran were explored. Select compounds effectively reverse catalepsy in mice when dosed orally.

View Article and Find Full Text PDF

The design and characterization of two, dual adenosine A(2A)/A(1) receptor antagonists in several animal models of Parkinson's disease is described. Compound 1 was previously reported as a potential treatment for Parkinson's disease. Further characterization of 1 revealed that it was metabolized to reactive intermediates that caused the genotoxicity of 1 in the Ames and mouse lymphoma L51784 assays.

View Article and Find Full Text PDF

Two reactive metabolites were identified in vivo for the dual A(2A)/A(1) receptor antagonist 1. Two strategies were implemented to successfully mitigate the metabolic liabilities associated with 1. Optimization of the arylindenopyrimidines led to a number of amide, ether, and amino analogs having comparable in vitro and in vivo activity.

View Article and Find Full Text PDF

Cannabinoids are known to be clinically beneficial for control of appetite disorders and nausea/vomiting, with emerging data that they can impact other GI disorders, such as inflammation. Post-inflammatory irritable bowel syndrome (PI-IBS) is a condition of perturbed intestinal function that occurs subsequent to earlier periods of intestinal inflammation. Cannabinoid 1 receptor (CB1R) and CB2R alterations in GI inflammation have been demonstrated in both animal models and clinically, but their continuing role in the post-inflammatory period has only been implicated to date.

View Article and Find Full Text PDF

A novel series of pyridazinone-functionalized phenylalanine analogues was prepared and evaluated for inhibition of cellular adhesion mediated by alpha4beta1/VCAM-1 and alpha4beta7/MAdCAM-1 interactions. Concise syntheses were developed and applied for exploration of structure-activity relationships pertaining to the pyridazinone ring as well as the N-acyl phenylalanine scaffold. Potent dual antagonists of alpha4beta1 and alpha4beta7 were generated from an amide subseries; antagonists selective for alpha4beta7 were identified from urea and carbamate-based subseries.

View Article and Find Full Text PDF

Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14.

View Article and Find Full Text PDF

A series of N-carboxy, N-alkyl, and N-carboxamido azabicyclo[2.2.2]octane carboxamides were prepared and assayed for inhibition of alpha4beta1-VCAM-1 and alpha4beta7-MAdCAM-1 interactions.

View Article and Find Full Text PDF

A small series of novel, imidazoles 4 have been prepared that exhibit very good binding affinities for the delta and mu opioid receptors (ORs), as well as demonstrate potent agonist functional activity at the delta OR. Representative imidazole 4a (K(i) delta = 0.9 nM; K(i) mu = 55 nM; K(i) kappa = 124 nM; EC(50) delta =13-25 nM) was further profiled for OR related in vivo effects.

View Article and Find Full Text PDF