Publications by authors named "Nathaniel R Twarog"

This study aimed to develop a streamlined method for evaluating the dilution ratio of drug dose-response plates created by automated liquid handlers in the early stages of drug discovery. The quantitative techniques commonly used for this purpose have restrictions due to their limited linear dynamic range and inaccuracies in assessing serial dilution performance. To address this challenge, we describe a method based on acoustic ejection mass spectrometry (AEMS).

View Article and Find Full Text PDF

This data set contains the data used in Twarog et al. (2021) to examine the robustness and utility of response surface models in drug combination analysis. It includes simulated experimental data for the evaluation of traditional index methods, as well as a processed library of interaction metrics evaluated on the Merck OncoPolyPharmacology Screen (O'Neil et al.

View Article and Find Full Text PDF

Quantitative evaluation of how drugs combine to elicit a biological response is crucial for drug development. Evaluations of drug combinations are often performed using index-based methods, which are known to be biased and unstable. We examine how these methods can produce misleadingly structured patterns of bias, leading to erroneous judgments of synergy or antagonism.

View Article and Find Full Text PDF

Combination therapy is increasingly central to modern medicine. Yet reliable analysis of combination studies remains an open challenge. Previous work suggests that common methods of combination analysis are too susceptible to noise to support robust scientific conclusions.

View Article and Find Full Text PDF

Paediatric solid tumours arise from endodermal, ectodermal, or mesodermal lineages. Although the overall survival of children with solid tumours is 75%, that of children with recurrent disease is below 30%. To capture the complexity and diversity of paediatric solid tumours and establish new models of recurrent disease, here we develop a protocol to produce orthotopic patient-derived xenografts at diagnosis, recurrence, and autopsy.

View Article and Find Full Text PDF

With combination therapies becoming increasingly vital to understanding and combatting disease, a reliable method for analyzing combined dose response is essential. The importance of combination studies both in basic and translational research necessitates a method that can be applied to a wide range of experimental and analytical conditions. However, despite increasing demand, no such unified method has materialized.

View Article and Find Full Text PDF

Phenotypic screening through high-content automated microscopy is a powerful tool for evaluating the mechanism of action of candidate therapeutics. Despite more than a decade of development, however, high content assays have yielded mixed results, identifying robust phenotypes in only a small subset of compound classes. This has led to a combinatorial explosion of assay techniques, analyzing cellular phenotypes across dozens of assays with hundreds of measurements.

View Article and Find Full Text PDF

Ewing sarcoma (EWS) is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis).

View Article and Find Full Text PDF