Background: Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk stratifying patients with cardiovascular disease, particularly ischemic heart disease. We hypothesized that a deep neural network could accurately identify patients with regional wall motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG).
Methods: This observational, retrospective study included patients who were treated at Beth Israel Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of each other between 2008 and 2019.
Chest radiography is an extremely powerful imaging modality, allowing for a detailed inspection of a patient's chest, but requires specialized training for proper interpretation. With the advent of high performance general purpose computer vision algorithms, the accurate automated analysis of chest radiographs is becoming increasingly of interest to researchers. Here we describe MIMIC-CXR, a large dataset of 227,835 imaging studies for 65,379 patients presenting to the Beth Israel Deaconess Medical Center Emergency Department between 2011-2016.
View Article and Find Full Text PDFObjectives: To determine the effect of a domain-specific ontology and machine learning-driven user interfaces on the efficiency and quality of documentation of presenting problems (chief complaints) in the emergency department (ED).
Methods: As part of a quality improvement project, we simultaneously implemented three interventions: a domain-specific ontology, contextual autocomplete, and top five suggestions. Contextual autocomplete is a user interface that ranks concepts by their predicted probability which helps nurses enter data about a patient's presenting problems.
Objective: Numerous attempts have been made to create a standardized "presenting problem" or "chief complaint" list to characterize the nature of an emergency department visit. Previous attempts have failed to gain widespread adoption as they were not freely shareable or did not contain the right level of specificity, structure, and clinical relevance to gain acceptance by the larger emergency medicine community. Using real-world data, we constructed a presenting problem list that addresses these challenges.
View Article and Find Full Text PDFMany studies illustrate variation in pain management protocols in emergency medicine. This study examines analgesia frameworks in emergency departments (EDs) in multiple countries, compares them with the recent literature, and illuminates the variability in protocols and treatment. A survey was conducted assessing the pain management framework and practices in a convenience sample of 40 hospitals distributed over 22 countries.
View Article and Find Full Text PDF