In this article, we propose a minimal model for the cooking-induced deformation of spaghetti and related food products. Our approach has parallels to the use of rod theories for the mechanics of slender bodies undergoing growth and is inspired by a wealth of experimental data from the food science literature. We use our model to investigate the cooking of a single strand of spaghetti confined to a pot and reproduce a curious three-stage deformation sequence that arises in the cooking process.
View Article and Find Full Text PDFModeling soft robots that move on surfaces is challenging from a variety of perspectives. A recent formulation by Bergou of a rod theory that exploits new developments in discrete differential geometry offers an attractive, numerically efficient avenue to help overcome some of these challenges. Their formulation is an example of a discrete elastic rod theory.
View Article and Find Full Text PDFDielectric elastomer actuators (DEAs) are a promising enabling technology for a wide range of emerging applications, including robotics, artificial muscles, and microfluidics. This is due to their large actuation strains, rapid response rate, low cost and low noise, high energy density, and high efficiency when compared with alternative actuators. These properties make DEAs ideal for the actuation of soft submersible devices, although their use has been limited because of three main challenges: (i) developing suitable, compliant electrode materials; (ii) the need to effectively insulate the actuator electrodes from the surrounding fluid; and (iii) the rigid frames typically required to prestrain the dielectric layers.
View Article and Find Full Text PDF