Publications by authors named "Nathaniel Leachman"

Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing.

View Article and Find Full Text PDF

ATAD2 is an E2F target gene that is highly expressed in gastrointestinal and breast carcinomas. Here we characterize a related gene product, ATAD2B. Both genes are evolutionarily conserved, with orthologues present in all eukaryotic genomes examined.

View Article and Find Full Text PDF

Teneurins are type II transmembrane proteins that play important roles in pattern formation in Drosophila, axon fasciculation and organogenesis in Caenorhabidits elegans, and neuronal pathfinding in the visual system of the mouse. There is evidence that a peptide derived from a proteolytic event near the C-terminus of teneurins leads to formation of an active neuropeptide, while processing at and near the transmembrane domain leads to shedding of the extracellular domain into the extracellular matrix and the generation of an intracellular fragment that is transported to the nucleus. In vertebrates there are four teneurins.

View Article and Find Full Text PDF

Background: Teneurins are a unique family of transmembrane proteins conserved from C. elegans and D. melanogaster to mammals.

View Article and Find Full Text PDF

In the developing pancreas, the basic helix-loop-helix (bHLH) protein Neurogenin3 (Ngn3) specifies which precursor cells ultimately will become endocrine cells and initiates the islet differentiation program. NeuroD1, a closely related bHLH protein and a downstream target of Ngn3, maintains the differentiation program initiated by Ngn3. We have developed an in vitro model of Ngn3-dependent differentiation by infecting pancreatic duct cell lines with an Ngn3-expressing adenovirus.

View Article and Find Full Text PDF