Defining predictors of antigen-binding affinity of antibodies is valuable for engineering therapeutic antibodies with high binding affinity to their targets. However, this task is challenging owing to the huge diversity in the conformations of the complementarity determining regions of antibodies and the mode of engagement between antibody and antigen. In this study, we used the structural antibody database (SAbDab) to identify features that can discriminate high- and low-binding affinity across a 5-log scale.
View Article and Find Full Text PDFThe dynamic interplay between virus and host plays out across many interacting surfaces as virus and host evolve continually in response to one another. In particular, epitope-paratope interactions (EPIs) between viral antigen and host antibodies drive much of this evolutionary race. In this review, we describe a series of recent studies examining aspects of epitope complexity that go beyond two interacting protein surfaces as EPIs are typically understood.
View Article and Find Full Text PDFThe SARS-CoV-2 Omicron sub-variants BA.1 and BA.2 have become the dominant variants worldwide due to enhanced transmissibility and immune evasion.
View Article and Find Full Text PDFThe Omicron variant features enhanced transmissibility and antibody escape. Here, we describe the Omicron receptor-binding domain (RBD) mutational landscape using amino acid interaction (AAI) networks, which are well suited for interrogating constellations of mutations that function in an epistatic manner. Using AAI, we map Omicron mutations directly and indirectly driving increased escape breadth and depth in class 1-4 antibody epitopes.
View Article and Find Full Text PDFComplex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses.
View Article and Find Full Text PDFThe SARS-COV2 Omicron variant has sparked global concern due to the possibility of enhanced transmissibility and escape from vaccines and therapeutics. In this study, we describe the mutational landscape of the Omicron variant using amino acid interaction (AAI) networks. AAI network analysis is particularly well suited for interrogating the impact of constellations of mutations as occur on Omicron that may function in an epistatic manner.
View Article and Find Full Text PDFThe evolution of mutations in SARS-CoV-2 at antigenic sites that impact neutralizing antibody responses in humans poses a risk to immunity developed through vaccination and natural infection. The highly successful RNA-based vaccines have enabled rapid vaccine updates that incorporate mutations from current variants of concern (VOCs). It is therefore important to anticipate future antigenic mutations as the virus navigates the heterogeneous global landscape of host immunity.
View Article and Find Full Text PDFMany interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes.
View Article and Find Full Text PDFSARS-CoV-2 mutations with antigenic effects pose a risk to immunity developed through vaccination and natural infection. While vaccine updates for current variants of concern (VOCs) are underway, it is likewise important to prepare for further antigenic mutations as the virus navigates the heterogeneous global landscape of host immunity. Toward this end, a wealth of data and tools exist that can augment existing genetic surveillance of VOC evolution.
View Article and Find Full Text PDFSci Rep
October 2020
Nipah Virus (NiV) has been designated as a priority disease with an urgent need for therapeutic development by World Health Organization. The monoclonal antibody m102.4 binds to the immunodominant NiV receptor-binding glycoprotein (GP), and potently neutralizes NiV, indicating its potential as a therapeutic agent.
View Article and Find Full Text PDFFailure to precisely distinguish malignant from healthy tissue has severe implications for breast cancer surgical outcomes. Clinical prognoses depend on precisely distinguishing healthy from malignant tissue during surgery. Laser Raman spectroscopy (LRS) has been previously shown to differentiate benign from malignant tissue in real time.
View Article and Find Full Text PDF