Transforming growth factor-β (TGF-β) may play a role in the pathogenesis of primary open-angle glaucoma (POAG). Elevated levels of TGF-β are found in the aqueous humor and in reactive optic nerve astrocytes in patients with glaucoma. In POAG, aqueous humor outflow resistance at the trabecular meshwork (TM) leads to increased intraocular pressure and retinal ganglion cell death.
View Article and Find Full Text PDFOpen-angle glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells and their axons. It is an irreversible disease with no established cure. The only currently approved treatment is aimed at lowering intraocular pressure, the most significant risk factor known to date.
View Article and Find Full Text PDFBackground/aims: Evidence suggests that vascular abnormalities play a role in the pathogenesis of open-angle glaucoma (OAG) in some patients. This study aims to assess changes in retrobulbar and retinal blood flow over time in patients with glaucoma and examine their relationship to glaucomatous progression, as determined by retinal and optic nerve structure.
Methods: In this observational study, 103 patients with OAG were examined at baseline and 18 months follow-up.
Open angle glaucoma (OAG) is a severe ocular disease characterized by progressive and irreversible vision loss. While elevated intraocular pressure (IOP) is a well-established risk factor for OAG, the progression of OAG in many cases, despite IOP treatment, suggests that other risk factors must play significant roles in the development of the disease. For example, various structural properties of the eye, ocular blood flow properties, and systemic conditions have been identified as risk factors for OAG.
View Article and Find Full Text PDFThe purpose of this review is to discuss the evolution of nanotechnology and its potential diagnostic and therapeutic applications in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: glaucoma, nanotechnology, nanomedicine, nanoparticles, ophthalmology and liposomes. We also reviewed pertinent references from articles found in this search.
View Article and Find Full Text PDFPurpose: To discuss the techniques and mechanisms of retinal oximetry with a focus on utilization of retinal oximetry in the assessment of retinal oxygen saturation in glaucoma.
Methods: We reviewed recent literature found by searching combinations of the following search terms: glaucoma, retinal oximetry, ocular blood flow, retinal blood flow, oxygen saturation. We also reviewed pertinent references from articles found in this search.
We report the development of the multiplexed nanoflare, a nanoparticle agent that is capable of simultaneously detecting two distinct mRNA targets inside a living cell. These probes are spherical nucleic acid (SNA) gold nanoparticle (Au NP) conjugates consisting of densely packed and highly oriented oligonucleotide sequences, many of which are hybridized to a reporter with a distinct fluorophore label and each complementary to its corresponding mRNA target. When multiplexed nanoflares are exposed to their targets, they provide a sequence specific signal in both extra- and intracellular environments.
View Article and Find Full Text PDF