We present a strategy for the rapid, efficient, and accurate measurement of the coefficient of diffusion (D) of solutes using a commercial capillary electrophoresis (CE) instrument. This approach utilizes the classic analysis of Taylor of the dispersion of solutes pumped hydrostatically through glass capillaries. To obtain accurate values of D, we modified Taylor's analysis of dispersion to account for the finite time required to reach steady-state flow in the capillary when using a CE instrument.
View Article and Find Full Text PDFThis paper describes a new technique--microscale steady-state kinetic analysis (microSKA)--that enables the rapid and parallel analysis of enzyme kinetics. Rather than physically defining a microscopic reactor through microfabrication, we show how the relative rates of reaction and transport in a macroscopic flow chamber, where the enzyme is immobilized on one wall of the chamber, results in the confinement of an enzyme-catalyzed reaction to a microscopic reactor volume adjacent to this wall. This volume has linear dimensions that are orders of magnitude smaller than the physical dimensions of the system (i.
View Article and Find Full Text PDF