Publications by authors named "Nathaniel Holton"

Article Synopsis
  • Diet-microbiota interactions are significant in inflammatory bowel diseases (IBD), with the aryl hydrocarbon receptor (AhR) playing a key role in metabolic regulation and inflammation.
  • A study found that feeding mice I3C, a compound in cruciferous vegetables, helped reduce inflammation and improve gut microbiota balance, while a diet lacking AhR ligands led to increased inflammation and mortality.
  • Results indicate that I3C can protect against chronic intestinal inflammation and restore gut health by positively influencing epithelial and microbiota status in models of IBD.
View Article and Find Full Text PDF

The serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD).

View Article and Find Full Text PDF

Noncoding RNA (ncRNA) modulation of gene expression has now been ubiquitously observed across all domains of life. An increasingly apparent role of ncRNAs is to coordinate changes in gene expressions in response to environmental stress. , a common food-born pathogen, is known for its striking ability to survive, adapt, and thrive in various unfavourable environments which makes it a particularly difficult pathogen to eliminate as well as an interesting model in which to study ncRNA contributions to cellular stress response.

View Article and Find Full Text PDF

Detection and characterization of DNA damage is essential for evaluating genotoxicity, monitoring DNA repair, developing biomarkers for exposures, and evaluating the efficacy of chemotherapies. These diverse applications for DNA damage measurements have spurred the continual development and refinement of methodologies for detecting, characterizing, and quantifying DNA damage from isolated DNA and in cells and tissues. Current damage detection methods cover a wide range of techniques from radiolabeling to mass spectrometry, and use of these techniques varies widely based on expense, expertise, and knowledge of adduct formation.

View Article and Find Full Text PDF

Environmental exposures, reactive by-products of cellular metabolism, and spontaneous deamination events result in a spectrum of DNA adducts that if un-repaired threaten genomic integrity by inducing mutations, increasing instability, and contributing to the initiation and progression of cancer. Assessment of DNA adducts in cells and tissues is critical for genotoxic and carcinogenic evaluation of chemical exposure and may provide insight into the etiology of cancer. Numerous methods to characterize the formation of DNA adducts and their retention for risk assessment have been developed.

View Article and Find Full Text PDF

Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins.

View Article and Find Full Text PDF

MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3'UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify.

View Article and Find Full Text PDF

Background: Activation Induced cytidine Deaminase (AID) targets the immunoglobulin genes of activated B cells, where it converts cytidine to uracil to induce mutagenesis and recombination. While essential for immunoglobulin gene diversification, AID misregulation can result in genomic instability and oncogenic transformation. This is classically illustrated in Burkitt's lymphoma, which is characterized by AID-induced mutation and reciprocal translocation of the c-MYC oncogene with the IgH loci.

View Article and Find Full Text PDF

Background: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis.

View Article and Find Full Text PDF