Introgressed DNA is often deleterious at many loci in the recipient species' genome, and is therefore purged by selection. Here, we use mathematical modeling and whole-genome simulations to study the influence of recombination on this process. We find that aggregate recombination controls the genome-wide rate of purging in the early generations after admixture, when purging is most rapid.
View Article and Find Full Text PDFThe mule deer () is an ungulate species that is distributed in a range from western Canada to central Mexico. Mule deer are an essential source of food for many predators, are relatively abundant, and commonly make broad migration movements. A clearer understanding of the mule deer genome can improve our knowledge of its population genetics, movements, and demographic history, aiding in conservation efforts.
View Article and Find Full Text PDFThe genomic proportion that two relatives share identically by descent-their genetic relatedness-can vary depending on the history of recombination and segregation in their pedigree. Previous calculations of the variance of genetic relatedness have defined genetic relatedness as the proportion of total genetic map length (cM) shared by relatives, and have neglected crossover interference and sex differences in recombination. Here, we consider genetic relatedness as the proportion of the total physical genome (bp) shared by relatives, and calculate its variance for general pedigree relationships, making no assumptions about the recombination process.
View Article and Find Full Text PDFThe biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues.
View Article and Find Full Text PDFIdentifying the traits causing reproductive isolation and the order in which they evolve is fundamental to understanding speciation. Here, we quantify prezygotic and intrinsic postzygotic isolation among allopatric, parapatric, and sympatric populations of the butterflies Heliconius elevatus and Heliconius pardalinus. Sympatric populations from the Amazon (H.
View Article and Find Full Text PDFThe domestic rock pigeon () is among the most widely distributed and phenotypically diverse avian species. is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the genome reference assembly and gene annotation dataset.
View Article and Find Full Text PDFThe cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells.
View Article and Find Full Text PDFHybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D.
View Article and Find Full Text PDFThe cells that are responsible for detecting magnetic fields in animals remain undiscovered. Previous studies have proposed that pigeons employ a magnetic sense system that consists of six bilateral patches of magnetite containing dendrites located in the rostral subepidermis of the upper beak. We have challenged this hypothesis arguing that clusters of iron-rich cells in this region are macrophages, not magnetosensitive neurons.
View Article and Find Full Text PDFThe Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation.
View Article and Find Full Text PDFUnderstanding the molecular and cellular mechanisms that mediate magnetosensation in vertebrates is a formidable scientific problem. One hypothesis is that magnetic information is transduced into neuronal impulses by using a magnetite-based magnetoreceptor. Previous studies claim to have identified a magnetic sense system in the pigeon, common to avian species, which consists of magnetite-containing trigeminal afferents located at six specific loci in the rostral subepidermis of the beak.
View Article and Find Full Text PDF