Publications by authors named "Nathaniel Dudley"

Due to their immunomodulatory and anti-inflammatory properties, tissue repair capabilities and regenerative potential, Wharton's jelly mesenchymal stem/stromal cells (WJMSCs) have been widely investigated as potential treatment for diverse clinical indications. WJMSCs have been found to be well-tolerated and safe, positioning them as a promising candidate for cellular therapy. To address the commercial need for manufacturing WJMSCs for clinical applications, the production scale should be capable of generating large quantities of cells that retain their expected identity, purity and potency.

View Article and Find Full Text PDF

Although vitamin D3 (VitD3) prevents angiogenesis in cancer, VitD3 deficiency is associated with greater incidence of cardiovascular events in patients. We examined the influence of VitD3 on the angiogenic potential of mesenchymal stem cells (MSCs). VitD3 treatment increased the expression of proangiogenic molecules in MSCs, which exhibited an endothelial cell-like phenotype and promoted vascularization and .

View Article and Find Full Text PDF

Rationale: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs.

Objective: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo.

View Article and Find Full Text PDF

We report that Notch signaling is essential for the switch from developmental plasticity to commitment during Caenorhabditis elegans embryogenesis. The GLP-1 and LIN-12 Notch receptors act to set a memory state that affects commitment of cells arising from the major ectodermal progenitor (AB blastomere) several cell divisions later, thereby preventing their forced reprogramming by an endoderm-determining transcription factor. In contrast to Notch-dependent cell fate induction, this activity is autonomous to the AB lineage, is independent of the known cell fate-inducing Notch ligands, and requires a putative secreted Notch ligand, Delta Serrate Lag-3 (DSL-3).

View Article and Find Full Text PDF

Although the discovery that double-stranded RNA is able to silence gene expression was only made five years ago, methods for experimentally silencing genes have already been extended into a broad diversity of organisms, including human cells. RNA interference has also been discovered to function in physiological gene silencing. RNA interference works by causing degradation of targeted mRNAs in the cytoplasm.

View Article and Find Full Text PDF

RNA interference (RNAi) is a phenomenon in which double-stranded RNA (dsRNA) silences endogenous gene expression. By injecting pools of dsRNAs into Caenorhabditis elegans, we identified a dsRNA that acts as a potent suppressor of the RNAi mechanism. We have used coinjection of dsRNAs to identify four additional candidates for genes involved in the RNAi mechanism in C.

View Article and Find Full Text PDF