Single-cell RNA-seq (scRNA-seq) has profiled hundreds of millions of human cells across organs, diseases, development, and perturbations to date. Mining these growing atlases could reveal cell-disease associations, discover cell states in unexpected tissue contexts, and relate in vivo biology to in vitro models. These require a common measure of cell similarity across the body and an efficient way to search.
View Article and Find Full Text PDFAims: To leverage deep learning on the resting 12-lead electrocardiogram (ECG) to estimate peak oxygen consumption (V˙O2peak) without cardiopulmonary exercise testing (CPET).
Methods And Results: V ˙ O 2 peak estimation models were developed in 1891 individuals undergoing CPET at Massachusetts General Hospital (age 45 ± 19 years, 38% female) and validated in a separate test set (MGH Test, n = 448) and external sample (BWH Test, n = 1076). Three penalized linear models were compared: (i) age, sex, and body mass index ('Basic'), (ii) Basic plus standard ECG measurements ('Basic + ECG Parameters'), and (iii) basic plus 320 deep learning-derived ECG variables instead of ECG measurements ('Deep ECG-V˙O2').
Introduction: The classification and management of pulmonary hypertension (PH) is challenging due to clinical heterogeneity of patients. We sought to identify distinct multimorbid phenogroups of patients with PH that are at particularly high-risk for adverse events.
Methods: A hospital-based cohort of patients referred for right heart catheterization between 2005-2016 with PH were included.
For any given body mass index (BMI), individuals vary substantially in fat distribution, and this variation may have important implications for cardiometabolic risk. Here, we study disease associations with BMI-independent variation in visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) fat depots in 40,032 individuals of the UK Biobank with body MRI. We apply deep learning models based on two-dimensional body MRI projections to enable near-perfect estimation of fat depot volumes (R in heldout dataset = 0.
View Article and Find Full Text PDFCardiovasc Digit Health J
August 2022
Background And Objective: Postexercise heart rate recovery (HRR) is an important indicator of cardiac autonomic function and abnormal HRR is associated with adverse outcomes. We hypothesized that deep learning on resting electrocardiogram (ECG) tracings may identify individuals with impaired HRR.
Methods: We trained a deep learning model (convolutional neural network) to infer HRR based on resting ECG waveforms (HRR) among UK Biobank participants who had undergone exercise testing.
Inter-individual variation in fat distribution is increasingly recognized as clinically important but is not routinely assessed in clinical practice, in part because medical imaging has not been practical to deploy at scale for this task. Here, we report a deep learning model trained on an individual's body shape outline-or "silhouette" -that enables accurate estimation of specific fat depots of interest, including visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes, and VAT/ASAT ratio. Two-dimensional coronal and sagittal silhouettes are constructed from whole-body magnetic resonance images in 40,032 participants of the UK Biobank and used as inputs for a convolutional neural network to predict each of these quantities.
View Article and Find Full Text PDFFor any given level of overall adiposity, individuals vary considerably in fat distribution. The inherited basis of fat distribution in the general population is not fully understood. Here, we study up to 38,965 UK Biobank participants with MRI-derived visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes.
View Article and Find Full Text PDFElectronic health record (EHR) datasets are statistically powerful but are subject to ascertainment bias and missingness. Using the Mass General Brigham multi-institutional EHR, we approximated a community-based cohort by sampling patients receiving longitudinal primary care between 2001-2018 (Community Care Cohort Project [C3PO], n = 520,868). We utilized natural language processing (NLP) to recover vital signs from unstructured notes.
View Article and Find Full Text PDFBackground: Central hemodynamic parameters are typically measured via pulmonary artery catherization-an invasive procedure that involves some risk to the patient and is not routinely available in all settings.
Objectives: This study sought to develop a noninvasive method to identify elevated mean pulmonary capillary wedge pressure (mPCWP).
Methods: We leveraged data from 248,955 clinical records at the Massachusetts General Hospital to develop a deep learning model that can infer when the mPCWP >15 mmHg using the 12-lead electrocardiogram (ECG).
Background: Cardiac magnetic resonance (CMR) is the gold standard for left ventricular hypertrophy (LVH) diagnosis. CMR-derived LV mass can be estimated using proprietary algorithms (eg, InlineVF), but their accuracy and availability may be limited.
Objective: To develop an open-source deep learning model to estimate CMR-derived LV mass.
Supervised machine learning applications in health care are often limited due to a scarcity of labeled training data. To mitigate the effect of small sample size, we introduce a pre-training approach, Patient Contrastive Learning of Representations (PCLR), which creates latent representations of electrocardiograms (ECGs) from a large number of unlabeled examples using contrastive learning. The resulting representations are expressive, performant, and practical across a wide spectrum of clinical tasks.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI)-enabled analysis of 12-lead ECGs may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains unclear whether AI provides meaningful and generalizable improvement in predictive accuracy beyond clinical risk factors for AF.
Methods: We trained a convolutional neural network (ECG-AI) to infer 5-year incident AF risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General Hospital (MGH).
Background: Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection.
Methods: Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]).