Publications by authors named "Nathaniel D Mueller"

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop.

View Article and Find Full Text PDF

Yield gaps, here defined as the difference between actual and attainable yields, provide a framework for assessing opportunities to increase agricultural productivity. Previous global assessments, centred on a single year, were unable to identify temporal variation. Here we provide a spatially and temporally comprehensive analysis of yield gaps for ten major crops from 1975 to 2010.

View Article and Find Full Text PDF

Irrigation reduces crop vulnerability to drought and heat stress and thus is a promising climate change adaptation strategy. However, irrigation also produces greenhouse gas emissions through pump energy use. To assess potential conflicts between adaptive irrigation expansion and agricultural emissions mitigation efforts, we calculated county-level emissions from irrigation energy use in the US using fuel expenditures, prices, and emissions factors.

View Article and Find Full Text PDF

Earthworms are critical soil ecosystem engineers that support plant growth in numerous ways; however, their contribution to global agricultural production has not been quantified. We estimate the impacts of earthworms on global production of key crops by analyzing maps of earthworm abundance, soil properties, and crop yields together with earthworm-yield responses from the literature. Our findings indicate that earthworms contribute to roughly 6.

View Article and Find Full Text PDF

Agricultural irrigation induces greenhouse gas emissions directly from soils or indirectly through the use of energy or construction of dams and irrigation infrastructure, while climate change affects irrigation demand, water availability and the greenhouse gas intensity of irrigation energy. Here, we present a scoping review to elaborate on these irrigation-climate linkages by synthesizing knowledge across different fields, emphasizing the growing role climate change may have in driving future irrigation expansion and reinforcing some of the positive feedbacks. This Review underscores the urgent need to promote and adopt sustainable irrigation, especially in regions dominated by strong, positive feedbacks.

View Article and Find Full Text PDF

Wildfires are a growing concern to society and the environment in many parts of the world. Within the United States, the land area burned by wildfires has steadily increased over the past 40 years. Agricultural land management is widely understood as a force that alters fire regimes, but less is known about how wildfires, in turn, impact the agriculture sector.

View Article and Find Full Text PDF

In our globalized world, local impacts of agricultural production are increasingly driven by consumption in geographically distant places. Current agricultural systems strongly rely on nitrogen (N) fertilization to increase soil fertility and crop yields. Yet, a large portion of N added to cropland is lost through leaching / runoff potentially leading to eutrophication in coastal ecosystems.

View Article and Find Full Text PDF

Background: Animal pollination supports agricultural production for many healthy foods, such as fruits, vegetables, nuts, and legumes, that provide key nutrients and protect against noncommunicable disease. Today, most crops receive suboptimal pollination because of limited abundance and diversity of pollinating insects. Animal pollinators are currently suffering owing to a host of direct and indirect anthropogenic pressures: land-use change, intensive farming techniques, harmful pesticides, nutritional stress, and climate change, among others.

View Article and Find Full Text PDF

Insight into the response of cereal yields to nitrogen fertilizer is fundamental to improving nutrient management and policies to sustain economic crop benefits and food sufficiency with minimum nitrogen pollution. Here we propose a new method to assess long-term (LT) regional sustainable nitrogen inputs. The core is a novel scaled response function between normalized yield and total net nitrogen input.

View Article and Find Full Text PDF

The ongoing agrarian transition from smallholder farming to large-scale commercial agriculture promoted by transnational large-scale land acquisitions (LSLAs) often aims to increase crop yields through the expansion of irrigation. LSLAs are playing an increasingly prominent role in this transition. Yet it remains unknown whether foreign LSLAs by agribusinesses target areas based on specific hydrological conditions and whether these investments compete with the water needs of existing local users.

View Article and Find Full Text PDF

Mitigating soil nitrous oxide (NO) emissions is essential for staying below a 2 °C warming threshold. However, accurate assessments of mitigation potential are limited by uncertainty and variability in direct emission factors (EFs). To assess where and why EFs differ, we created high-resolution maps of crop-specific EFs based on 1,507 georeferenced field observations.

View Article and Find Full Text PDF

Animal-level responses to weather variability in US dairy systems are well described, but the potential of housing and other farm management practices (for example, fans and sprinklers) to moderate the impacts of weather remains uncertain. Here we assess the influence of historical variation in the temperature-humidity index (THI) on milk yields using monthly state-level yield data and high-resolution daily weather data over 1981-2018. We find that milk yields are compromised by exposure to both extreme heat (>79 THI) and cold (<39 THI), causing average daily yield decreases of around 3.

View Article and Find Full Text PDF

Input-output estimates of nitrogen on cropland are essential for improving nitrogen management and better understanding the global nitrogen cycle. Here, we compare 13 nitrogen budget datasets covering 115 countries and regions over 1961-2015. Although most datasets showed similar spatiotemporal patterns, some annual estimates varied widely among them, resulting in large ranges and uncertainty.

View Article and Find Full Text PDF

The ongoing agrarian transition from small-holder farming to large-scale commercial agriculture is reshaping systems of production and human well-being in many regions. A fundamental part of this global transition is manifested in large-scale land acquisitions (LSLAs) by agribusinesses. Its energy implications, however, remain poorly understood.

View Article and Find Full Text PDF

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY).

View Article and Find Full Text PDF

Historically, human uses of land have transformed and fragmented ecosystems, degraded biodiversity, disrupted carbon and nitrogen cycles and added prodigious quantities of greenhouse gases (GHGs) to the atmosphere. However, in contrast to fossil-fuel carbon dioxide (CO) emissions, trends and drivers of GHG emissions from land management and land-use change (together referred to as 'land-use emissions') have not been as comprehensively and systematically assessed. Here we present country-, process-, GHG- and product-specific inventories of global land-use emissions from 1961 to 2017, we decompose key demographic, economic and technical drivers of emissions and we assess the uncertainties and the sensitivity of results to different accounting assumptions.

View Article and Find Full Text PDF

Foreign investors have acquired approximately 90 million hectares of land for agriculture over the past two decades. The effects of these investments on local food security remain unknown. While additional cropland and intensified agriculture could potentially increase crop production, preferential targeting of prime agricultural land and transitions toward export-bound crops might affect local access to nutritious foods.

View Article and Find Full Text PDF

What is the contribution of the 'Green Revolution' to improvements in child health during the 20 century? We provide global scale estimates of this relationship by constructing a novel, spatially-precise indicator of modern crop variety (MV) diffusion and leveraging child-level data from over 600,000 children across 21,604 sampling locations in 37 developing countries between 1961-2000. Results indicate that the diffusion of MVs reduced infant mortality by 2.4-5.

View Article and Find Full Text PDF

Many studies have estimated the adverse effects of climate change on crop yields, however, this literature almost universally assumes a constant geographic distribution of crops in the future. Movement of growing areas to limit exposure to adverse climate conditions has been discussed as a theoretical adaptive response but has not previously been quantified or demonstrated at a global scale. Here, we assess how changes in rainfed crop area have already mediated growing season temperature trends for rainfed maize, wheat, rice, and soybean using spatially-explicit climate and crop area data from 1973 to 2012.

View Article and Find Full Text PDF

To meet rising demands for agricultural products, existing agricultural lands must either produce more or expand in area. Yield gaps (YGs)-the difference between current and potential yield of agricultural systems-indicate the ability to increase output while holding land area constant. Here, we assess YGs in global grazed-only permanent pasture lands using a climate binning approach.

View Article and Find Full Text PDF