Publications by authors named "Nathaniel D Graham"

Site-specific recombinase enzymes function in heterologous cellular environments to initiate strand-switching reactions between unique DNA sequences termed recombinase binding sites. Depending on binding site position and orientation, reactions result in integrations, excisions, or inversions of targeted DNA sequences in a precise and predictable manner. Here, we established five different stable recombinase expression lines in maize through -mediated transformation of T-DNA molecules that contain coding sequences for Cre, R, FLPe, phiC31 Integrase, and phiC31 excisionase.

View Article and Find Full Text PDF

Binary Bacterial Artificial Chromosomes (BiBAC) are large insert cloning vectors that contain the necessary features required for Agrobacterium-mediated transformation. However, the large size of BiBACs and low-copy number in Escherichia coli (DH10B) and Agrobacterium tumefaciens make cloning experiments more difficult than other available binary vector systems. Therefore, a protocol that outlines preparation, modification, and transformation of high-molecular weight (HMW) constructs is advantageous for researchers looking to use BiBACs in plant genomics research.

View Article and Find Full Text PDF

Minichromosomes have been generated in maize using telomere-mediated truncation. Telomere DNA, because of its repetitive nature, can be difficult to manipulate. The protocols in this unit describe two methods for generating the telomere DNA required for the initiation of telomere-mediated truncation.

View Article and Find Full Text PDF

Plant minichromosomes have the potential for stacking multiple traits on a separate entity from the remainder of the genome. Transgenes carried on an independent chromosome would facilitate conferring many new properties to plants and using minichromosomes as genetic tools. The favored method for producing plant minichromosomes is telomere-mediated chromosomal truncation because the epigenetic nature of centromere function prevents using centromere sequences to confer the ability to organize a kinetochore when reintroduced into plant cells.

View Article and Find Full Text PDF

Engineered minichromosomes are small chromosomes that contain a transgene and selectable marker, as well as all of the necessary components required for maintenance in an organism separately from the standard chromosome set. The separation from endogenous chromosomes makes engineered minichromosomes useful in the production of transgenic plants. Introducing transgenes to minichromosomes does not have the risk of insertion within a native gene; additionally, transgenes on minichromosomes can be transferred between lines without the movement of linked genes.

View Article and Find Full Text PDF