ABBV-167, a phosphate prodrug of BCL-2 inhibitor venetoclax, was recently progressed into the clinic as an alternative means of reducing pill burden for patients in high-dose indications. The dramatically enhanced aqueous solubility of ABBV-167 allowed for high drug loading within a crystalline tablet and, when administered in phase I clinical study, conferred venetoclax exposure commensurate with the equivalent dose administered as an amorphous solid dispersion. In enabling the progression into the clinic, we performed a comprehensive evaluation of the CMC development aspects of this beyond the rule of five (bRo5) prodrug.
View Article and Find Full Text PDFSince gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications.
View Article and Find Full Text PDFHerein we describe the discovery of A-1331852, a first-in-class orally active BCL-X inhibitor that selectively and potently induces apoptosis in BCL-X-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-X inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-X.
View Article and Find Full Text PDFThe stability of antibody-drug conjugates (ADCs) in circulation is critical for maximum efficacy and minimal toxicity. An ADC reaching the intended target intact can deliver the highest possible drug load to the tumor and reduce off-target toxicity from free drug in the blood. As such, assessment of ADC stability is a vital piece of data during development.
View Article and Find Full Text PDFMicellar solubilization is an important concept in the delivery of poorly water-soluble drugs. The rational selection of the type and the amount of surfactant to be incorporated in a formulation require comprehensive solubility studies. These studies are time and material demanding, both of which are scarce, especially during late discovery and early development stages.
View Article and Find Full Text PDFPurpose: Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption.
Methods: In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations.
A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses.
View Article and Find Full Text PDFAmorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase.
View Article and Find Full Text PDFNavitoclax (ABT-263), a Bcl-2 family inhibitor and ABT-199, a Bcl-2 selective inhibitor, are high molecular weight, high logP molecules that show low solubility in aqueous media. While these properties are associated with low oral bioavailability (F), both navitoclax and ABT-199 showed moderate F in preclinical species. The objective of the described study was to determine if lymphatic transport contributes to the systemic availability of navitoclax and ABT-199 in dogs.
View Article and Find Full Text PDFProteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers.
View Article and Find Full Text PDFPoly(ethylene glycol) (PEG) is widely used in the pharmaceutical, biotechnology, and medical device industries. Although PEG is a biocompatible polymer that has enjoyed widespread use in drug delivery technology, it is not considered adhesive toward mucosal tissue. Here the authors describe a simple approach to enhancing mucoadsorption of PEG polymers through end group functionalization with the amino acid 3,4-dihydroxyphenyl-L-alanine (DOPA).
View Article and Find Full Text PDF