Atrial fibrillation (AF) is often successfully treated by catheter ablation. Those cases of AF that do not readily succumb to ablation therapy would benefit from improved methods for mapping the complex spatial patterns of tissue activation that typify recalcitrant AF. To this end, the purpose of our study was to investigate the use of numerical deconvolution to improve the spatial resolution of activation maps provided by 2-D arrays of intra-cardiac recording electrodes.
View Article and Find Full Text PDFTo improve spatial resolution in recordings of intra-cardiac electrograms we characterized the utility of a novel configuration of two recording electrodes arranged perpendicularly to the endocardial surface. We hypothesized that this configuration denoted as orthogonal close unipolar (OCU) would combine advantages of conventional unipolar and contact bipolar (CBP) configurations. Electrical excitation was simulated in a computational model as arising from dipole current or from multi-wavelet reentry sources.
View Article and Find Full Text PDFAims: Catheter ablation strategies for treatment of cardiac arrhythmias are quite successful when targeting spatially constrained substrates. Complex, dynamic, and spatially varying substrates, however, pose a significant challenge for ablation, which delivers spatially fixed lesions. We describe tissue excitation using concepts of surface topology which provides a framework for addressing this challenge.
View Article and Find Full Text PDF