Nanophotonic optomechanical devices allow the observation of nanoscale vibrations with a sensitivity that has dramatically advanced the metrology of nanomechanical structures and has the potential to impact studies of nanoscale physical systems in a similar manner. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radiofrequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF-driven responses of single mesoscopic magnetic structures in ambient conditions.
View Article and Find Full Text PDFBottom-up self-assembly of high-density block-copolymer nanopatterns is of significant interest for a range of technologies, including memory storage and low-cost lithography for on-chip applications. The intrinsic or native spacing of a given block copolymer is dependent upon its size (N, degree of polymerization), composition, and the conditions of self-assembly. Polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymers, which are well-established for the production of strongly segregated single-layer hexagonal nanopatterns of silica dots, can be layered sequentially to produce density-doubled and -tripled nanopatterns.
View Article and Find Full Text PDFBlock copolymer (BCP) self-assembly is an effective and versatile approach for the production of complex nanopatterned interfaces. Monolayers of BCP films can be harnessed to produce a variety of different patterns, including lines, with specific spacings and order. In this work, bilayers of cylinder-forming polystyrene-block-polydimethylsiloxane block copolymer (PS-b-PDMS) were transformed into arrays of silica lines with half the pitch normally attained for conventional monolayers, with the PDMS acting as the source for the SiOx.
View Article and Find Full Text PDFBlock copolymers can be used to template large arrays of nanopatterns with periodicities equal to the characteristic spacing of the polymer. Here we demonstrate a technique capitalizing on the multilayered arrangement of cylindrical domains to effectively double the pattern density templated by a given polymer. By controlling the initial thickness of the film and the solvent annealing conditions, it was possible to reproducibly create density doubled lines by swelling the film with solvent until bilayers of horizontal cylinders were obtained.
View Article and Find Full Text PDFBlock copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The technique involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density.
View Article and Find Full Text PDF