Publications by authors named "Nathan Yumibe"

The identification of clinical candidate LY3522348 (compound ) is described. LY3522348 is a highly selective, oral dual inhibitor of human ketohexokinase isoforms C and A (hKHK-C, hKHK-A). Optimization began with highly efficient ()-2-(2-methylazetidin-1-yl)-6-(1-pyrazol-4-yl)-4-(trifluoromethyl)nicotinonitrile ().

View Article and Find Full Text PDF

The identification of LSN3318839, a positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), is described. LSN3318839 increases the potency and efficacy of the weak metabolite GLP-1(9-36)NH to become a full agonist at the GLP-1R and modestly potentiates the activity of the highly potent full-length ligand, GLP-1(7-36)NH. LSN3318839 preferentially enhances G protein-coupled signaling by the GLP-1R over β-arrestin recruitment.

View Article and Find Full Text PDF

As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties.

View Article and Find Full Text PDF

The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet β-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing.

View Article and Find Full Text PDF

The Zucker diabetic fatty (ZDF) rat, an inbred strain of obese Zucker fatty rat, develops early onset of insulin resistance and displays hyperglycemia and hyperlipidemia. The phenotypic changes resemble human type 2 diabetes associated with obesity and therefore the strain is used as a pharmacological model for type 2 diabetes. The aim of the current study was to compare the pharmacokinetics and hepatic metabolism in male ZDF and Sprague-Dawley (SD) rats of five antidiabetic drugs that are known to be cleared via various mechanisms.

View Article and Find Full Text PDF

The utility of pigs as preclinical animals for pharmaceutical development was assessed by evaluating the pharmacokinetics and pharmacodynamics of glipizide (Glucotrol®) following oral administration of immediate-release (IR) and modified-release (MR) formulations. Doses of 10 and 30 mg were administered to six male pigs in a crossover design. Blood samples were collected at selected time-points up to 48 h after dose.

View Article and Find Full Text PDF

Fatty acid binding protein 3 (Fabp3) has been used as a serological biomarker of cardiac injury, but its utility as a preclinical biomarker of injury to skeletal muscle is not well described. Fabp3 concentrations were determined for tissues from Sprague-Dawley rats and found to occur at highest concentrations in cardiac muscle and in skeletal muscles containing an abundance of type I fibers, such as the soleus muscle. Soleus is also a primary site of skeletal muscle (SKM) injury caused by lipid-lowering peroxisome proliferator-activated receptor alpha (PPAR-alpha) agonists.

View Article and Find Full Text PDF

A series of potent amide linked PPARgamma/delta dual agonists (1a) has been discovered through rational design. In the ZDF rat model of type 2 diabetes, compound (R)-3-[4-(3-{1-[(5-chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-ethyl}-5-fluoro-phenoxy)-2-ethyl-phenyl]-propionic acid (42) from this series has demonstrated glucose lowering efficacy comparable to the marketed PPARgamma agonist rosiglitazone with less weight gain.

View Article and Find Full Text PDF

The design and synthesis of dual PPAR gamma/delta agonist (R)-3-{2-ethyl-4-[3-(4-ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-phenyl}propionic acid is described. This compound dose-dependently lowered plasma glucose in hyperglycemic male Zucker diabetic fatty (ZDF) rats and produced less weight gain relative to rosiglitazone at an equivalent level of glucose control.

View Article and Find Full Text PDF

Novel tetrahydroisoquinolines have been developed as potent PPAR ligands. Evaluation of these compounds in PPARgamma responsive models of type 2 diabetes is described.

View Article and Find Full Text PDF

The design and synthesis of the dual peroxisome proliferator-activated receptor (PPAR) gamma/delta agonist (R)-3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-2-ethyl-phenyl}-propionic acid (20) for the treatment of type 2 diabetes and associated dyslipidemia is described. The compound possesses a potent dual hPPAR gamma/delta agonist profile (IC(50) = 19 nM/4 nM; EC(50) = 102 nM/6 nM for hPPARgamma and hPPARdelta, respectively). In preclinical models, the compound improves insulin sensitivity and reverses diabetic hyperglycemia with less weight gain at a given level of glucose control relative to rosiglitazone.

View Article and Find Full Text PDF

Specific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia.

View Article and Find Full Text PDF

With the aim of improving HCV protease inhibitors reported in our previous manuscripts, we synthesized and evaluated a series of 1a-based tetrapeptidyl alpha-ketoamides with additional P4 modification. The promising analog discovered through this SAR, 5a, was further derivatized at P1' or P1 position. As a result of these efforts, we found that replacement of the P4 valine as seen in 1a with cyclohexylglycine (Chg) resulted in the discovery of 5a, 5c, and 5e endowed with improved cellular activity in comparison to 1a.

View Article and Find Full Text PDF

With the aim of discovering potent and selective HCV protease inhibitors, we synthesized and evaluated a series of 1a based tetrapeptidyl ketoamides with additional modification(s) at P1', P1, and P3 positions. As a result of this effort, we found that replacement of the P3 valine with tert-leucine resulted in the discovery of a series of inhibitors (e.g.

View Article and Find Full Text PDF

We describe herein the design, syntheses and evaluation of a number of bicycloproline P2 bearing HCV protease inhibitors endowed with impressive enzyme potency, enzyme selectivity, cellular activity and favorable ADME profiles.

View Article and Find Full Text PDF

A new series of hPPARalpha agonists containing a 2,4-dihydro-3H-1,2,4-triazol-3-one (triazolone) core is described leading to the discovery of 5 (LY518674), a highly potent and selective PPARalpha agonist.

View Article and Find Full Text PDF

New RXR-selective modulators possessing a 6-fluoro trienoic acid moiety (6Z olefin) or a fluorinated/heterocyclic-substituted benzene core ring, were synthesized in an expedient and selective way. A subset of these compounds was evaluated for their metabolic properties (exposure in IRC male mice) and show a dramatic increase of exposure compared to our reference compound, 3 (LG101506).

View Article and Find Full Text PDF

Purpose: The in vivo hepatic extraction ratio of cynomolgus monkeys was correlated with the corresponding in vitro extraction ratios that were determined in monkey microsomal incubations.

Method: For compounds that are eliminated mainly through liver phase I metabolism, the extraction ratio calculated from liver microsomal stability studies should correlate with their in vivo hepatic extraction ratios and also with their oral bioavailability in monkey. We used both well-stirred and parallel tube models of intrinsic clearance for the correlation.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Nathan Yumibe"

  • - Nathan Yumibe's research predominantly focuses on the development of innovative pharmacological agents aimed at enhancing treatment options for type 2 diabetes and related metabolic disorders, emphasizing the identification and optimization of selective receptor modulators and enzyme inhibitors.
  • - Recent findings include the discovery of LY3522348, a selective ketohexokinase inhibitor, and LSN3318839, a positive allosteric modulator of the GLP-1 receptor, both demonstrating significant potential for oral efficacy in managing diabetes.
  • - His research also highlights the pharmacokinetic profiles of various compounds, including GPR40 agonists, and their effects on insulin secretion and glucose metabolism, underscoring the importance of optimizing compounds for better therapeutic outcomes with minimized side effects.