Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed disorder of school-age children. Although genetic and brain-imaging studies suggest a contribution of altered dopamine (DA) signaling in ADHD, evidence of signaling perturbations contributing to risk is largely circumstantial. The presynaptic, cocaine- and amphetamine (AMPH)-sensitive DA transporter (DAT) constrains DA availability at presynaptic and postsynaptic receptors following vesicular release and is targeted by the most commonly prescribed ADHD therapeutics.
View Article and Find Full Text PDFIntroduction: Dopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release.
View Article and Find Full Text PDF