Publications by authors named "Nathan T Fiore"

Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia.

View Article and Find Full Text PDF

Immune cells are critical in promoting neuroinflammation and neuropathic pain and in facilitating pain resolution, depending on their inflammatory and immunoregulatory cytokine response. Interleukin (IL)-35, secreted by regulatory immune cells, is a member of the IL-12 family with a potent immunosuppressive function. In this study, we investigated the effects of IL-35 on pain behaviors, spinal microglia phenotype following peripheral nerve injury, and in vitro microglial cultures in male and female mice.

View Article and Find Full Text PDF

Immune cells play a critical role in promoting neuroinflammation and the development of neuropathic pain. However, some subsets of immune cells are essential for pain resolution. Among them are regulatory T cells (Tregs), a specialised subpopulation of T cells that limit excessive immune responses and preserve immune homeostasis.

View Article and Find Full Text PDF

Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution.

View Article and Find Full Text PDF

Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis and in vitro primary cultures of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models.

View Article and Find Full Text PDF

A modern approach for cancer treatment is the use of immunotherapy, and particularly immune checkpoint inhibitors, such as anti-programmed cell death protein 1 (PD-1), alone and in combination with chemotherapy. The PD-1 pathway plays a crucial role in inhibiting immune responses and recently has been shown to modulate neuronal activity. However, the impact of PD-1 blockade on the development of chemotherapy-induced peripheral neuropathy is currently unknown.

View Article and Find Full Text PDF

Introduction/aims: Clinically, the chemotherapeutic agent oxaliplatin can cause peripheral neuropathy, impaired balance, and muscle wastage. Using a preclinical model, we investigated whether exercise intervention could improve these adverse conditions.

Methods: Mice were chronically treated with oxaliplatin alone or in conjunction with exercise.

View Article and Find Full Text PDF

Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature.

View Article and Find Full Text PDF

We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects.

View Article and Find Full Text PDF

Nerve damage leads to the development of disabling neuropathic pain in susceptible individuals, where patients present with pain as well as co-morbid affective behavioural disturbances, such as anhedonia, decreased motivation and depression. In this study we aimed to characterise changes in neuroinflammation in the medial prefrontal cortex (mPFC) and hippocampus (HP) in a rat model of neuropathic pain (NP) and behavioural changes. 53 rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either, No effect, Acute effect or Lasting effect on the basis of changes in exploration behaviour in a radial-arm maze.

View Article and Find Full Text PDF

Following publication of the original article [1], the authors reported an error in Figure 4 as the wrong figure was used.

View Article and Find Full Text PDF

Background: Complex regional pain syndrome (CRPS) is a debilitating condition where trauma to a limb results in devastating persistent pain that is disproportionate to the initial injury. The pathophysiology of CRPS remains unknown; however, accumulating evidence suggests it is an immunoneurological disorder, especially in light of evidence of auto-antibodies in ~ 30% of patients. Despite this, a systematic assessment of all circulating leukocyte populations in CRPS has never been performed.

View Article and Find Full Text PDF

Nerve damage leads to the development of disabling neuropathic pain in susceptible individuals, where patients present with pain as well as co-morbid behavioral changes, such as anhedonia, decreased motivation and depression. In this study we evaluated whether radial maze behavioral disruptions and glia-cytokine-neuronal adaptations in the hippocampus occurred in individual rats after nerve injury. Exploration behavior and spatial memory were quantified using a radial maze task, while mechanical allodynia was assessed using von Frey testing.

View Article and Find Full Text PDF

Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression).

View Article and Find Full Text PDF