Background: Volatile anesthetics have been shown to modify immune cell functions via several mechanisms, some of which have been only partially elucidated. We demonstrated that isoflurane inhibits primary leukocyte integrin lymphocyte function-associated antigen-1 (LFA-1) by binding to the allosteric cavity critical for conformational activation to its high-affinity form. It remains to be determined whether the allosteric inhibition of LFA-1 by isoflurane can be generalized to other anesthetics such as sevoflurane.
View Article and Find Full Text PDFVolatile anesthetics (VAs), such as isoflurane, induce a general anesthetic state by binding to specific targets (i.e., ion channels) in the central nervous system (CNS).
View Article and Find Full Text PDFThe molecular and structural basis of anesthetic interactions with conformations and functionalities of cell surface receptors remains to be elucidated. We have demonstrated that the widely used volatile anesthetic isoflurane blocks the activation-dependent conformational conversion of integrin lymphocyte function associated antigen-1 (LFA-1), the major leukocyte cell adhesion molecule, to a high-affinity configuration. Perturbation of LFA-1 activation by isoflurane at clinically relevant concentrations leads to the inhibition of T-cell interactions with target cells as well as ligand-triggered intracellular signaling.
View Article and Find Full Text PDFThe alpha subunit-inserted (I) domain of integrin alphaLbeta2 [lymphocyte function-associated antigen-1 (LFA-1)] binds to intercellular adhesion molecule-1 (ICAM-1). The C- and N-termini of the alpha I domain are near one another on the "lower" face, opposite the metal ion-dependent adhesion site (MIDAS) on the "upper face". In conversion to the open alpha I domain conformation, a 7 A downward, axial displacement of C-terminal helix alpha7 is allosterically linked to rearrangement of the MIDAS into its high-affinity conformation.
View Article and Find Full Text PDFUnderstanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin alpha(L) inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1.
View Article and Find Full Text PDFBackbone conformational fluctuations on multiple time scales in a cysteine-free Thermus thermophilus ribonuclease HI mutant (ttRNH(*)) are quantified using (15)N nuclear magnetic spin relaxation. Laboratory-frame relaxation data acquired at 310 K and at static magnetic field strengths of 11.7, 14.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2002
The molecular conformation of peptide fragment 105-115 of transthyretin, TTR(105-115), previously shown to form amyloid fibrils in vitro, has been determined by magic-angle spinning solid-state NMR spectroscopy. 13C and 15N linewidth measurements indicate that TTR(105-115) forms a highly ordered structure with each amino acid in a unique environment. 2D 13C-13C and 15N-13C-13C chemical shift correlation experiments, performed on three fibril samples uniformly 13C,15N-labeled in consecutive stretches of 4 aa, allowed the complete sequence-specific backbone and side-chain 13C and 15N resonance assignments to be obtained for residues 105-114.
View Article and Find Full Text PDFThe process of obtaining sequential resonance assignments for heterogeneous polypeptides and large proteins by solid-state NMR (ssNMR) is impeded by extensive spectral degeneracy in these systems. Even in these challenging cases, the cross peaks are not distributed uniformly over the entire spectral width. Instead, there exist both well-resolved single resonances and distinct groups of resonances well separated from the most crowded region of the spectrum.
View Article and Find Full Text PDF