Background: Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population.
Results: Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents.
Engineered Genetic Incompatibility (EGI) is an engineered extreme underdominance genetic system wherein hybrid animals are not viable, functioning as a synthetic speciation event. There are several strategies in which EGI could be leveraged for genetic biocontrol of pest populations. We used an agent-based model of (Spotted Wing Drosophila) to determine how EGI would fare with high rates of endemic genetic resistance alleles.
View Article and Find Full Text PDFUnderstanding the fine-scale genome sequence diversity that exists within natural populations is important for developing models of species migration, temporal stability, and range expansion. For invasive species, agricultural pests, and disease vectors, sequence diversity at specific loci in the genome can impact the efficacy of next-generation genetic biocontrol strategies. Here we describe a pipeline for haplotype-resolution genetic variant discovery and quantification from thousands of Spotted Wing Drosophila (, SWD) isolated at two field sites in the North-Central United States (Minnesota) across two seasons.
View Article and Find Full Text PDFEngineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS).
View Article and Find Full Text PDF