Publications by authors named "Nathan R B Boase"

There has been growing interest in polymeric systems that break down or undergo property changes in response to stimuli. Such polymers can play important roles in biological systems, where they can be used to control the release of therapeutics, modulate imaging signals, actuate movement, or direct the growth of cells. In this Perspective, after discussing the most important stimuli relevant to biological applications, we will present a selection of recent exciting developments.

View Article and Find Full Text PDF

Electric cars are desirable for their environmental and economic benefits yet face limitations in range in cold weather due to the increased energy demands for cabin heating. To provide efficient heating for vehicles, flexible composite electrothermal heaters offer a viable solution owing to their lightweight design, efficiency, and adaptability for use within and beyond vehicle interiors. The current study aims to improve electrothermal heater stability and performance by understanding the impact of the polymer structure on composite properties.

View Article and Find Full Text PDF

Infections caused by methicillin-resistant (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells.

View Article and Find Full Text PDF

Infectious diseases caused by bacterial pathogens are a leading cause of mortality worldwide. In particular, recalcitrant bacterial communities known as biofilms are implicated in persistent and difficult to treat infections. With a diminishing antibiotic pipeline, new treatments are urgently required to combat biofilm infections.

View Article and Find Full Text PDF

In tertiary science education, students are encouraged to engage in discipline specific thinking, to learn their chosen subject. The challenge for educators is engaging all students equitably, despite their educational backgrounds and depth of discipline specific knowledge. Personalising learning in the context of large-scale tertiary courses can only be achieved by using digital technologies.

View Article and Find Full Text PDF

Historically, the irreversible reduction of aryldiazonium salts has provided a reliable method to modify surfaces, demonstrating a catalogue of suitable diazonium salts for targeted applications. This work expands the knowledge of diazonium salt chemistry to participate in surface electroinitiated emulsion polymerization (SEEP). The influence of concentration, electronic effects, and steric hindrance/regiochemistry of the diazonium salt initiator on the production of polymeric films is examined.

View Article and Find Full Text PDF

Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years.

View Article and Find Full Text PDF

Ultraviolet-photodissociation (UVPD) mass spectrometry is an emerging analytical tool for structural elucidation of biomolecules including lipids. Gas phase UVPD of ionised fatty acids (FAs) can promote fragmentation that is diagnostic for molecular structure including the regiochemistry of carbon-carbon double bonds and methyl branching position(s). Typically, however, lipids exhibit poor conversion to photoproducts under UVPD and thus require longer integration times to achieve the signal-to-noise required for structural assignments.

View Article and Find Full Text PDF

Bioorthogonal chemistry is revolutionizing the fields of biological chemistry and nanomedicine, providing tools to actively probe and perturb native biochemical processes. Photochemistry provides the opportunity to actively and non-invasively control bioorthogonal reactions, providing sophisticated optochemical tools. Despite the opportunities in bioorthogonal photochemistry, there remain many significant challenges to the clinical translation of current research.

View Article and Find Full Text PDF

Rationale: Eicosanoids are short-lived bio-responsive lipids produced locally from oxidation of polyunsaturated fatty acids (FAs) via a cascade of enzymatic or free radical reactions. Alterations in the composition and concentration of eicosanoids are indicative of inflammation responses and there is strong interest in developing analytical methods for the sensitive and selective detection of these lipids in biological mixtures. Most eicosanoids are hydroxy FAs (HFAs), which present a particular analytical challenge due to the presence of regioisomers arising from differing locations of hydroxylation and unsaturation within their structures.

View Article and Find Full Text PDF

Establishing control over chemical reactions on interfaces is a key challenge in contemporary surface and materials science, in particular when introducing well-defined functionalities in a reversible fashion. Reprogrammable, adaptable and functional interfaces require sophisticated chemistries to precisely equip them with specific functionalities having tailored properties. In the last decade, reversible chemistries-both covalent and noncovalent-have paved the way to precision functionalize 2 or 3D structures that provide both spatial and temporal control.

View Article and Find Full Text PDF

Gene therapy has arisen as a pioneering technique to treat diseases by direct employment of nucleic acids as medicine. The major historical problem is to develop efficient and safe systems for the delivery of therapeutic genes into the target cells. Carbon nanotubes (CNTs) have demonstrated considerable promise as delivery vectors due to their (i) high aspect ratio and (ii) capacity to translocate through plasma membranes, known as the nanoneedle effect.

View Article and Find Full Text PDF

Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG.

View Article and Find Full Text PDF

Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan-hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5h.

View Article and Find Full Text PDF

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles.

View Article and Find Full Text PDF

Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice.

View Article and Find Full Text PDF

Hyperbranched polymers conjugated to a peptide-aptamer were prepared using a combination of RAFT polymerisation and click chemistry for targeting tumour cells in vivo. The polymers showed enhanced cell-uptake in vitro (compared to unconjugated polymer) while excellent specificity for solid tumours was observed in vivo using a mouse model of melanoma.

View Article and Find Full Text PDF