Clonogenic assays evaluate the ability of single cells to proliferate and form colonies. This process approximates the regrowth and recurrence of tumors after treatment with radiation or chemotherapy, and thereby provides a drug discovery platform for compounds that block this process. However, because of their labor-intensive and cumbersome nature, adapting canonical clonogenic assays for high throughput screening (HTS) has been challenging.
View Article and Find Full Text PDFProtein synthesis is essential for growth, proliferation and survival of cells. Translation factors are overexpressed in many cancers and in preclinical models, their experimental inhibition has been shown to inhibit cancer growth. Differential regulation of translation also occurs upon exposure to cancer-relevant stressors such as hypoxia and ionizing radiation.
View Article and Find Full Text PDFThe p53 transcription factor regulates the expression of genes involved in cellular responses to stress, including cell cycle arrest and apoptosis. The p53 transcriptional program is extremely malleable, with target gene expression varying in a stress- and cell type-specific fashion. The molecular mechanisms underlying differential p53 target gene expression remain elusive.
View Article and Find Full Text PDFThe p53 transcriptional program orchestrates alternative responses to stress, including cell cycle arrest and apoptosis, but the mechanism of cell fate choice upon p53 activation is not fully understood. Here we report that PUMA (p53 up-regulated modulator of apoptosis), a key mediator of p53-dependent cell death, is regulated by a noncanonical, gene-specific mechanism. Using chromatin immunoprecipitation assays, we found that the first half of the PUMA locus (approximately 6 kb) is constitutively occupied by RNA polymerase II and general transcription factors regardless of p53 activity.
View Article and Find Full Text PDFp53 is a pleiotropic transcription factor driving a flexible transcriptional program that mediates disparate cellular responses to stress, including cell cycle arrest and apoptosis. The mechanisms by which p53 differentially regulates its diverse target genes remain poorly understood. In this issue of Genes & Development, Morachis and colleagues (pp.
View Article and Find Full Text PDFActivation of the p53 pathway mediates cellular responses to diverse forms of stress. Here we report that the p53 target gene p21(CIP1) is regulated by stress at post-initiation steps through conversion of paused RNA polymerase II (RNAP II) into an elongating form. High-resolution chromatin immunoprecipitation assays (ChIP) demonstrate that p53-dependent activation of p21(CIP1) transcription after DNA damage occurs concomitantly with changes in RNAP II phosphorylation status and recruitment of the elongation factors DSIF (DRB Sensitivity-Inducing Factor), P-TEFb (Positive Transcription Elongation Factor b), TFIIH, TFIIF, and FACT (Facilitates Chromatin Transcription) to distinct regions of the p21(CIP1) locus.
View Article and Find Full Text PDF