Publications by authors named "Nathan P Cowieson"

Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance.

View Article and Find Full Text PDF

Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues.

View Article and Find Full Text PDF

The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • - B21 is a small-angle X-ray scattering (SAXS) beamline located at the Diamond Light Source in the UK, using a bending magnet source from a 3 GeV storage ring to generate high-intensity X-ray beams.
  • - The setup includes advanced equipment like a double multi-layer monochromator and toroidal focusing optic, achieving a high photon delivery rate to a small focal spot, and offering automated and manual sample loading options.
  • - Since 2013, B21 has been operational for users, providing effective measurement capabilities for various biological macromolecules due to its extensive scattering vector range and low background noise.
View Article and Find Full Text PDF

MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8-21 keV to a focal spot of 22 × 12 µm FWHM (H × V).

View Article and Find Full Text PDF
Article Synopsis
  • Protein folding and misfolding are significant in health and industry, affecting protein structure and function.
  • High temperature and pressure are used to expedite reactions and notably influence protein behavior.
  • The study reveals that applying both high pressure and temperature to ribonuclease A results in different unfolded protein structures.
View Article and Find Full Text PDF

The growing problem of antibiotic resistance underlies the critical need to develop new treatments to prevent and control resistant bacterial infection. Exogenous application of bacteriophage lysins results in rapid and specific destruction of Gram-positive bacteria and therefore lysins represent novel antibacterial agents. The PlyC phage lysin is the most potent lysin characterized to date and can rapidly lyse Group A, C and E streptococci.

View Article and Find Full Text PDF

Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood.

View Article and Find Full Text PDF

MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography.

View Article and Find Full Text PDF

The activity of the allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, provides the final hydrolytic step for the mineralization of s-triazines, such as atrazine and cyanuric acid. Indeed, the action of AtzF provides metabolic access to two of the three nitrogens in each triazine ring.

View Article and Find Full Text PDF

Apical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON) proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development.

View Article and Find Full Text PDF

Small angle X-ray scattering (SAXS) of biomacromolecules in solution has become a prominent technique in structural biology. Whilst the majority of current use is for static measurements, the field is also advancing for measurements where the sample at the beam position changes with time, using high throughput systems, chromatography, high speed mixing and pump-probe techniques in particular. Time resolved work is greatly aided by increasingly sophisticated software for acquiring and analysing data, together with developments in X-ray sources, beamline optics and detectors.

View Article and Find Full Text PDF

The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form.

View Article and Find Full Text PDF

Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Biotin protein ligase (BPL) from Staphylococcus aureus is a potential antibiotic target due to its role in metabolism and drug resistance.
  • The study details the structural analysis of SaBPL in both its active (holo) and inactive (apo) forms through X-ray crystallography, revealing its ligand binding and conformational changes.
  • The findings enhance our understanding of SaBPL's unique functions and could guide future antibiotic development strategies.
View Article and Find Full Text PDF

The interaction between sodium phytate and three proteins was studied using solubility experiments and differential scanning calorimetry (DSC) to assess structural stability. Lysozyme, which is positively charged at neutral pH, bound phytate by an electrostatic interaction. There was evidence that phytate cross-linked lysozyme molecules forcing them out of solution.

View Article and Find Full Text PDF

The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.

View Article and Find Full Text PDF

Protein-phytate interactions are fundamental to the detrimental impact of phytate on protein/amino acid availability. The inclusion of exogenous phytase in pig and poultry diets degrades phytate to more innocuous esters and attenuates these negative influences. The objective of the present review is to reappraise the underlying mechanisms of these interactions and reassess their implications in pig and poultry nutrition.

View Article and Find Full Text PDF

Unlabelled: Following the discovery of an exo-1,3/1,4-β-glucanase (glycoside hydrolase family 3) from a seaweed-associated bacterium Pseudoalteromonas sp. BB1, the recombinant three-domain protein (ExoP) was crystallized and its structure solved to 2.3 Å resolution.

View Article and Find Full Text PDF

TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA.

View Article and Find Full Text PDF

The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR β-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent αβ T-cell lineage differentiation. Whereas αβTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant α-chain (pre-Tα) that pairs with any TCR β-chain (TCRβ) following successful TCR β-gene rearrangement.

View Article and Find Full Text PDF

Retromer is a peripheral membrane protein complex that has pleiotropic roles in endosomal membrane trafficking. The core of retromer possesses three subunits, VPS35, VPS29 and VPS26, that play different roles in binding to cargo, regulatory proteins and complex stabilization. We have performed an investigation of the thermodynamics of core retromer assembly using isothermal titration calorimetry (ITC) demonstrating that VPS35 acts as the central subunit to which VPS29 and VPS26 bind independently.

View Article and Find Full Text PDF

High-resolution techniques are the mainstay of structural biologists; however, to address challenging biological systems many are now turning to hybrid approaches that use complementary structural data. In this review we outline the types of structural problems that benefit from combining results of many methods, we summarise the types of data that can be generated by complementary approaches, and we highlight the application of combined methods in structural biology with recent structural studies of membrane proteins, mega-complexes and inherently flexible proteins.

View Article and Find Full Text PDF

This chapter describes the methodology adopted in a project aimed at structural and functional characterization of proteins that potentially play an important role in mammalian macrophages. The methodology that underpins this project is applicable to both small research groups and larger structural genomics consortia. Gene products with putative roles in macrophage function are identified using gene expression information obtained via DNA microarray technology.

View Article and Find Full Text PDF

Expression of insoluble protein in E. coli is a major bottleneck of high throughput structural biology projects. Refolding proteins into native conformations from inclusion bodies could significantly increase the number of protein targets that can be taken on to structural studies.

View Article and Find Full Text PDF