The principal eyes of jumping spiders (Salticidae) integrate a dual-lens system, a tiered retinal matrix with multiple photoreceptor classes and muscular control of retinal movements to form high resolution images, extract color information, and dynamically evaluate visual scenes. While much work has been done to characterize these more complex principal anterior eyes, little work has investigated the three other pairs of simpler secondary eyes: the anterior lateral eye pair and two posterior (lateral and median) pairs of eyes. We investigated the opsin protein component of visual pigments in the eyes of three species of salticid using transcriptomics and immunohistochemistry.
View Article and Find Full Text PDFSome visual antipredator strategies involve the rapid movement of highly contrasting body patterns to frighten or confuse the predator. Bright body colouration, however, can also be detected by potential predators and used as a cue. Among spiders, Argiope spp.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of vision loss in humans. Despite its prevalence and medical significance, many aspects of AMD remain elusive and treatment options are limited. Here, we present data that suggest jumping spiders offer a unique opportunity for understanding the fundamentals underlying retinal degeneration, thereby shedding light on a process that impacts millions of people globally.
View Article and Find Full Text PDFDiurnal pollinators often rely on color cues to make decisions when visiting flowers. Orchid bees are major tropical pollinators, with most studies of their pollination behavior to date focusing on scent collection and chemical ecology. The objective of this study was to measure their spectral sensitivities to preliminarily characterize color vision in the orchid bee Euglossa dilemma and compare it to the known spectral sensitivity of other closely related bees.
View Article and Find Full Text PDFSearch images are perceptual biases acquired through experience that improve an individual's ability to detect the object of their search (e.g., a predator seeking prey).
View Article and Find Full Text PDFExamining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor.
View Article and Find Full Text PDFInvestigating how animals navigate space and time is key to understanding communication. Small differences in spatial positioning or timing can mean the difference between a message received and a missed connection. However, these spatio-temporal dynamics are often overlooked or are subject to simplifying assumptions in investigations of animal signaling.
View Article and Find Full Text PDFAnimal communication is inherently spatial. Both signal transmission and signal reception have spatial biases-involving direction, distance, and position-that interact to determine signaling efficacy. Signals, be they visual, acoustic, or chemical, are often highly directional.
View Article and Find Full Text PDFThe term "cognitive template" originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to nonhuman animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this nonstandardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology.
View Article and Find Full Text PDFInterview with Nathan Morehouse, who studies the visual and behavioral ecology of butterflies and jumping spiders at the University of Cincinnati.
View Article and Find Full Text PDFFunctional traits, particularly those that impact fitness, can shape the ecological and evolutionary relationships among coexisting species of the same trophic level. Thus, examining these traits and properties of their distributions (underdispersion, overdispersion) within communities can provide insights into key ecological interactions (e.g.
View Article and Find Full Text PDFMorehouse provides an overview of spider vision, with an emphasis on the two main eye types found in spiders. Commonalities of form and function among spiders are discussed but also the huge diversity of eyes that are adapted to various ecological niches.
View Article and Find Full Text PDFMolecules that mediate reproductive interactions are some of the most rapidly evolving traits. Researchers have often suggested that this is due to coevolution at key physiological interfaces. However, very few of these interfaces are well understood at the functional level.
View Article and Find Full Text PDFChromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events.
View Article and Find Full Text PDFAdult jumping spiders are known for their extraordinary eyesight and complex, visually guided behaviors, including elaborate communicatory displays, navigational abilities, and prey-specific predatory strategies. Juvenile spiders also exhibit many of these behaviors, yet their visual systems are many times smaller. How do juveniles retain high visually guided performance despite severe size constraints on their visual systems? We investigated developmental changes in eye morphology and visual function in the jumping spider Phidippus audax using morphology, histology, ophthalmoscopy, and optical measurements.
View Article and Find Full Text PDFThe idea that the fitness value of body coloration may be affected by biochemically mediated trade-offs has received much research attention. For example, melanization is believed to interact with other fitness-related traits via competition for substrates, costs associated with the synthesis of melanin or pleiotropic effects of the involved genes. However, genetic correlations between coloration and fitness-related traits remain poorly understood.
View Article and Find Full Text PDFInteractions between herbivorous insects and their host plants are a central component of terrestrial food webs and a critical topic in agriculture, where a substantial fraction of potential crop yield is lost annually to pests. Important insights into plant-insect interactions have come from research on specific plant defences and insect detoxification mechanisms. Yet, much remains unknown about the molecular mechanisms that mediate plant-insect interactions.
View Article and Find Full Text PDFComplex signaling traits such as pheromone profiles can play an important role in the early stages of reproductive isolation between populations. These signals can diverge along multiple trait axes, and signal receivers are often sensitive to subtle differences in signal properties. In the Lepidoptera, prior research has highlighted that natural selection can drive rapid chemical signal divergence, for instance via mate recognition to maintain species boundaries.
View Article and Find Full Text PDFSpiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow.
View Article and Find Full Text PDFMale ejaculates are often structurally complex, and this complexity is likely to influence key reproductive interactions between males and females. However, despite its potential evolutionary significance, the molecular underpinnings of ejaculate structural complexity have received little empirical attention. To address this knowledge gap, we sought to understand the biochemical and functional properties of the structurally complex ejaculates of butterflies.
View Article and Find Full Text PDFVariation in life-history traits can have major impacts on the ecological and evolutionary responses of populations to environmental change. Life-history variation often results from trade-offs that arise because individuals have a limited pool of resources to allocate among traits. However, human activities are increasing the availability of many once-limited resources, such as nitrogen and phosphorus, with potentially major implications for the expression and evolution of life-history trade-offs.
View Article and Find Full Text PDFReproductive traits experience high levels of selection because of their direct ties to fitness, often resulting in rapid adaptive evolution. Much of the work in this area has focused on male reproductive traits. However, a more comprehensive understanding of female reproductive adaptations and their relationship to male characters is crucial to uncover the relative roles of sexual cooperation and conflict in driving co-evolutionary dynamics between the sexes.
View Article and Find Full Text PDF