Purpose: Data on lines of therapy (LOTs) for cancer treatment are important for clinical oncology research, but LOTs are not explicitly recorded in electronic health records (EHRs). We present an efficient approach for clinical data abstraction and a flexible algorithm to derive LOTs from EHR-based medication data on patients with glioblastoma multiforme (GBM).
Methods: Nonclinicians were trained to abstract the diagnosis of GBM from EHRs, and their accuracy was compared with abstraction performed by clinicians.
Objective: While there are currently approaches to handle unstructured clinical data, such as manual abstraction and structured proxy variables, these methods may be time-consuming, not scalable, and imprecise. This article aims to determine whether selective prediction, which gives a model the option to abstain from generating a prediction, can improve the accuracy and efficiency of unstructured clinical data abstraction.
Materials And Methods: We trained selective classifiers (logistic regression, random forest, support vector machine) to extract 5 variables from clinical notes: depression (n = 1563), glioblastoma (GBM, n = 659), rectal adenocarcinoma (DRA, n = 601), and abdominoperineal resection (APR, n = 601) and low anterior resection (LAR, n = 601) of adenocarcinoma.