Publications by authors named "Nathan McDonald"

Polymyxin antibiotics B and colistin are considered drugs of last resort for the treatment of multi-drug and carbapenem-resistant Gram-negative bacteria. With the emergence and dissemination of multi-drug resistance, monitoring the use and resistance to polymyxins imparted by mobilised colistin resistance genes () is becoming increasingly important. The genus is widely disseminated throughout the environment and serves as a reservoir of -3, posing a significant risk for the spread of resistance to polymyxins.

View Article and Find Full Text PDF

Synthetic biology and genome engineering capabilities have facilitated the utilization of bacteria for a myriad of applications, ranging from medical treatments to biomanufacturing of complex molecules. The bacterial outer membrane, specifically the lipopolysaccharide (LPS), plays an integral role in the physiology, pathogenesis, and serves as a main target of existing detection assays for Gram-negative bacteria. Here we use CRISPR/Cas9 recombineering to insert lipid A biosynthesis genes into the genome of an strain expressing the lipid IV subunit.

View Article and Find Full Text PDF

Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast , the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core.

View Article and Find Full Text PDF

Objectives: One of the most pivotal decisions an emergency physician (EP) makes is whether to admit or discharge a patient. The emergency department (ED) work-up leading to this decision involves several resource-intensive tests. Previous studies have demonstrated significant differences in EP resource utilization, measured by lab tests, advanced imaging (magnetic resonance imaging [MRI], computed tomography [CT], ultrasound), consultations, and propensity to admit a patient.

View Article and Find Full Text PDF

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.

View Article and Find Full Text PDF

The most prevalent microbial eukaryote in the human gut is , an obligate commensal protist also common in many other vertebrates. is descended from free-living stramenopile ancestors; how it has adapted to thrive within humans and a wide range of hosts is unclear. Here, we cultivated six strains spanning the diversity of the genus and generated highly contiguous, annotated genomes with long-read DNA-seq, Hi-C, and RNA-seq.

View Article and Find Full Text PDF

Phosphoramidite chemical DNA synthesis technology is utilized for creating ssDNA building blocks and is widely used by commercial vendors. Recent advances in enzymatic DNA synthesis (EDS), including engineered enzymes and reversibly terminated nucleotides, bring EDS technology into competition with traditional chemical methods. In this short study, we evaluate oligos produced using a benchtop EDS instrument alongside chemically produced commercial oligonucleotides to assemble a synthetic gene encoding green fluorescent protein (GFP).

View Article and Find Full Text PDF

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through a liquid-liquid phase separation. Here, we find that the phase separation of SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation.

View Article and Find Full Text PDF

Recent advancements in engineered microbial systems capable of deployment in complex environments have enabled the creation of unique signatures for environmental forensics operations. These microbial systems must be robust, able to thrive in specific environments of interest and contain molecular signatures, enabling the detection of the community across conditions. Furthermore, these systems must balance biocontainment concerns with the stability and persistence required for environmental forensics.

View Article and Find Full Text PDF

Cell-free expression systems provide a suite of tools that are used in applications from sensing to biomanufacturing. One of these applications is genetic circuit prototyping, where the lack of cloning is required and a high degree of control over reaction components and conditions enables rapid testing of design candidates. Many studies have shown utility in the approach for characterizing genetic regulation elements, simple genetic circuit motifs, protein variants or metabolic pathways.

View Article and Find Full Text PDF

The global use of organophosphate insecticides (OPPs) and the growing concern of off-target side effects due to OPP exposure has prompted the need for sensitive and economical detection methods. Here we set out to engineer a previously identified OPP responsive transcription factor, ChpR, from to respond to alternative OPPs and generate a repertoire of whole-cell biosensors for OPPs. The ChpR transcription factor and cognate promoter P have been shown to activate transcription in the presence of the OPP chlorpyrifos (CPF).

View Article and Find Full Text PDF

Cellular lysates capable of transcription and translation have become valuable tools for prototyping genetic circuits, screening engineered functional parts, and producing biological components. Here we report that lysates derived from CO92 are functional and can utilize both the σ70 and the bacteriophage T7 promoter systems to produce green fluorescent protein (GFP). Because of the natural lifestyle of , lysates were produced from cultures grown at 21 °C, 26 °C, and 37 °C to mimic the infection cycle.

View Article and Find Full Text PDF

Synapses are the basic units of neuronal communication. Understanding how synapses assemble and function is therefore essential to understanding nervous systems. Decades of study have identified many molecular components and functional mechanisms of synapses.

View Article and Find Full Text PDF

Many eukaryotes assemble an actin- and myosin-based cytokinetic ring (CR) on the plasma membrane (PM) for cell division, but how it is anchored there remains unclear. In Schizosaccharomyces pombe, the F-BAR protein Cdc15 links the PM via its F-BAR domain to proteins in the CR's interior via its SH3 domain. However, Cdc15's F-BAR domain also directly binds formin Cdc12, suggesting that Cdc15 may polymerize a protein network directly adjacent to the membrane.

View Article and Find Full Text PDF

The formation of synapses during neuronal development is essential for establishing neural circuits and a nervous system. Every presynapse builds a core 'active zone' structure, where ion channels cluster and synaptic vesicles release their neurotransmitters. Although the composition of active zones is well characterized, it is unclear how active-zone proteins assemble together and recruit the machinery required for vesicle release during development.

View Article and Find Full Text PDF

Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions.

View Article and Find Full Text PDF

In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast , symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized.

View Article and Find Full Text PDF

F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM.

View Article and Find Full Text PDF

Background: Bacteria are prey for many viruses that hijack the bacterial cell in order to propagate, which can result in bacterial cell lysis and death. Bacteria have developed diverse strategies to counteract virus predation, one of which is the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated (Cas) proteins immune defense system. Species within the bacterial family Vibrionaceae are marine organisms that encounter large numbers of phages.

View Article and Find Full Text PDF

Nonulosonic acids (NulOs) are a diverse family of α-keto acid carbohydrates present across all branches of life. Bacteria biosynthesize NulOs among which are several related prokaryotic-specific isomers and one of which, -acetylneuraminic acid (sialic acid), is common among all vertebrates. Bacteria display various NulO carbohydrates on lipopolysaccharide (LPS), and the identities of these molecules tune host-pathogen recognition mechanisms.

View Article and Find Full Text PDF

The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of contractile ring components relative to the plasma membrane.

View Article and Find Full Text PDF

Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA).

View Article and Find Full Text PDF