Red porgy (Pagrus pagrus) is a reef-associated, economically-important, winter-spawning, protogynous Sparidae species that appears to have declined in abundance in recent years along the southeast United States Atlantic coast. We used spatially-explicit generalized additive models built with fishery-independent chevron trap (1990-2021) and video data (2011-2021) to quantify the ways in which red porgy relative abundance and mean size varied across temporal, spatial, environmental, and habitat variables. Mean red porgy relative abundance from traps declined by 77% between 1992 and 2021, and declines were similarly large (69%) on video between 2011 and 2021.
View Article and Find Full Text PDFExternal attachment of electronic tags has been increasingly used in fish studies. Many researchers have used ad hoc attachment methods and provided little or no validation for the assumption that tagging itself does not bias animal behaviour or survival. The authors compared six previously published methods for externally attaching acoustic transmitters to fish in a tank holding experiment with black sea bass Centropristis striata (L.
View Article and Find Full Text PDFMost demersal fishes are difficult to observe and track due to methodological and analytical constraints. We used an acoustic positioning system to elucidate the horizontal and vertical movements of 44 red snapper (Lutjanus campechanus) off North Carolina, USA, in 2019. Mean movement rate and distance off bottom varied by individual, with larger red snapper generally moving faster and spending more time farther off the bottom than smaller individuals.
View Article and Find Full Text PDFExtreme weather events strongly influence marine, freshwater, and estuarine ecosystems in myriad ways. We quantified movements of a demersal oceanic fish species (gray triggerfish Balistes capriscus; N = 30) before, during, and after two hurricanes in 2017 using fine-scale acoustic telemetry at a 37-m deep study site in North Carolina, USA. During storms, gray triggerfish movement and emigration rates were 100% and 2550% higher, respectively, than on days with no storms.
View Article and Find Full Text PDFMarine fish abundance and distribution often varies across spatial scales for a variety of reasons, and this variability has significant ecological and management consequences. We quantified the distribution of reef-associated fish species along the southeast United States Atlantic coast using underwater video survey samples (N = 4,855 in 2011-2014) to elucidate variability within species across space, depths, and habitats, as well as describe broad-scale patterns in species richness. Thirty-two species were seen at least 10 times on video, and the most commonly observed species were red porgy (Pagrus pagrus; 41.
View Article and Find Full Text PDFInvasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990-2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began.
View Article and Find Full Text PDFOccupancy models using incidence data collected repeatedly at sites across the range of a population are increasingly employed to infer patterns and processes influencing population distribution and dynamics. While such work is common in terrestrial systems, fewer examples exist in marine applications. This disparity likely exists because the replicate samples required by these models to account for imperfect detection are often impractical to obtain when surveying aquatic organisms, particularly fishes.
View Article and Find Full Text PDFThe spatial dynamics of species are the result of complex interactions between density-independent and density-dependent sources of variability. Disentangling these two sources of variability has challenged ecologists working in both terrestrial and aquatic ecosystems. Using a novel spatially explicit statistical model, we tested for the presence of density-independent and density-dependent habitat selection in yellowfin sole (Limanda aspera) in the eastern Bering Sea.
View Article and Find Full Text PDF