Publications by authors named "Nathan Law"

Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.

View Article and Find Full Text PDF

Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) are the fundamental units from which continuous spermatogenesis arises. Although our knowledge regarding the basic properties of SSCs has grown, driven primarily through the advancement of techniques and technologies to study SSCs, the mechanisms controlling their fate remain largely unknown. Among the modern strategies to evaluate SSCs, lineage tracing is among the few established approaches that allow for functional assessment of stem cell capacity.

View Article and Find Full Text PDF

In sexual reproduction, sperm contribute half the genomic material required for creation of offspring yet core molecular mechanisms essential for their formation are undefined. Here, the α-arrestin molecule arrestin-domain containing 5 (ARRDC5) is identified as an essential regulator of mammalian spermatogenesis. Multispecies testicular tissue transcriptome profiling indicates that expression of Arrdc5 is testis enriched, if not specific, in mice, pigs, cattle, and humans.

View Article and Find Full Text PDF

Spermatogenic regeneration is key for male fertility and relies on activities of an undifferentiated spermatogonial population. Here, a high-throughput approach with primary cultures of mouse spermatogonia was devised to rapidly predict alterations in functional capacity. Combining the platform with a large-scale RNAi screen of transcription factors, we generated a repository of new information from which pathway analysis was able to predict candidate molecular networks regulating regenerative functions.

View Article and Find Full Text PDF

Obesity during pregnancy leads to adverse health outcomes in offspring. However, the initial effects of maternal obesity (MO) on embryonic organogenesis have yet to be thoroughly examined. Using unbiased single-cell transcriptomic analyses (scRNA-seq), the effects of MO on the myogenic process is investigated in embryonic day 9.

View Article and Find Full Text PDF

Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII-VIII of the seminiferous epithelium and a cluster for all other stages.

View Article and Find Full Text PDF

The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation.

View Article and Find Full Text PDF

Purpose: Patients and physicians are often pleased when uncorrected visual acuity (UCVA) on post-operative day 1 (POD1) after cataract surgery is 20/20. Unfortunately, this UCVA does not always last. This article aims to investigate the relationship between excellent uncorrected visual acuity on post-operative day 1 and final post-operative UCVA after uncomplicated cataract surgery.

View Article and Find Full Text PDF

Background: The germline serves as a conduit for transmission of genetic and epigenetic information from one generation to the next. In males, spermatozoa are the final carriers of inheritance and their continual production is supported by a foundational population of spermatogonial stem cells (SSCs) that forms from prospermatogonial precursors during the early stages of neonatal development. In mammals, the timing for which SSCs are specified and the underlying mechanisms guiding this process remain to be completely understood.

View Article and Find Full Text PDF

Insulin pulsatility is important to hepatic response in regulating blood glucose. Growing evidence suggests that insulin-secreting pancreatic β-cells can adapt to chronic disruptions of pulsatility to rescue this physiologically important behavior. We determined the time scale for adaptation and examined potential ion channels underlying it.

View Article and Find Full Text PDF

Continuity, robustness, and regeneration of cell lineages relies on stem cell pools that are established during development. For the mammalian spermatogenic lineage, a foundational spermatogonial stem cell (SSC) pool arises from prospermatogonial precursors during neonatal life via mechanisms that remain undefined. Here, we mapped the kinetics of this process in vivo using a multi-transgenic reporter mouse model, in silico with single-cell RNA sequencing, and functionally with transplantation analyses to define the SSC trajectory from prospermatogonia.

View Article and Find Full Text PDF

Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men.

View Article and Find Full Text PDF

An early sign of islet failure in type 2 diabetes (T2D) is the loss of normal patterns of pulsatile insulin release. Disruptions in pulsatility are associated with a left shift in glucose sensing that can cause excessive insulin release in low glucose (relative hyperinsulinemia, a hallmark of early T2D) and β-cell exhaustion, leading to inadequate insulin release during hyperglycemia. Our hypothesis was that reducing excessive glucokinase activity in diabetic islets would improve their function.

View Article and Find Full Text PDF

Protein kinase A (PKA) has recently been shown to mimic the actions of follicle-stimulating hormone (FSH) by activating signaling pathways that promote granulosa cell (GC) differentiation, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We sought to elucidate the mechanism by which PKA, a Ser/Thr kinase, intersected the PI3K/AKT and MAPK/ERK pathways that are canonically activated by receptor tyrosine kinases (RTKs). Our results show that for both of these pathways, the RTK is active in the absence of FSH yet signaling down the pathways to commence transcriptional responses requires FSH-stimulated PKA activation.

View Article and Find Full Text PDF

Unlabelled: To identify the risk factors, causative organisms, antimicrobial susceptibility and outcomes of microbial keratitis in a large county hospital in Houston, Texas. Case series.

Methods: Setting: A large county hospital in Houston, Texas.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade.

View Article and Find Full Text PDF

Within the ovarian follicle, granulosa cells (GCs) surround and support immature oocytes. FSH promotes the differentiation and proliferation of GCs and is essential for fertility. We recently reported that ERK activation is necessary for FSH to induce key genes that define the preovulatory GC.

View Article and Find Full Text PDF

FSH promotes maturation of ovarian follicles. One pathway activated by FSH in granulosa cells (GCs) is phosphatidylinositol-3 kinase/AKT. The AKT target FOXO1 is reported to function primarily as a repressor of FSH genes, including Ccnd2 and Inha.

View Article and Find Full Text PDF

Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA.

View Article and Find Full Text PDF

The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K.

View Article and Find Full Text PDF
Article Synopsis
  • A woman developed sudden bilateral ophthalmoparesis and ataxia four weeks after a bout of gastroenteritis.
  • Elevated serum antibody levels against asialo-GM1 and GD1a were noted, while anti-GQ1b antibodies, usually present in Miller Fisher variant of Guillain-Barre syndrome, were absent.
  • Despite thorough evaluation, no other cause for her symptoms was identified, and she improved after receiving intravenous immunoglobulin treatment.
View Article and Find Full Text PDF