Excess "micromotion" of trapped ions due to the residual radio-frequency (rf) trapping field at their location is often undesirable and is usually carefully minimized. Here, we induce precise amounts of excess micromotion on individual ions by adjusting the local static electric field they experience. Micromotion modulates the coupling of an ion to laser fields, ideally tuning it from its maximum value to zero as the ion is moved away from the trap's rf null.
View Article and Find Full Text PDFAnalog quantum simulation is widely considered a step on the path to fault tolerant quantum computation. With current noisy hardware, the accuracy of an analog simulator will degrade after just a few time steps, especially when simulating complex systems likely to exhibit quantum chaos. Here we describe a quantum simulator based on the combined electron-nuclear spins of individual Cs atoms, and its use to run high fidelity simulations of three different model Hamiltonians for >100 time steps.
View Article and Find Full Text PDF