Nucleic Acids Res
September 2024
The amount of genomic region data continues to increase. Integrating across diverse genomic region sets requires consensus regions, which enable comparing regions across experiments, but also by necessity lose precision in region definitions. We require methods to assess this loss of precision and build optimal consensus region sets.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2024
Representation learning models have become a mainstay of modern genomics. These models are trained to yield vector representations, or embeddings, of various biological entities, such as cells, genes, individuals, or genomic regions. Recent applications of unsupervised embedding approaches have been shown to learn relationships among genomic regions that define functional elements in a genome.
View Article and Find Full Text PDFBackground: As biological data increase, we need additional infrastructure to share them and promote interoperability. While major effort has been put into sharing data, relatively less emphasis is placed on sharing metadata. Yet, sharing metadata is also important and in some ways has a wider scope than sharing data themselves.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2024
Data from the single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) are now widely available. One major computational challenge is dealing with high dimensionality and inherent sparsity, which is typically addressed by producing lower dimensional representations of single cells for downstream clustering tasks. Current approaches produce such individual cell embeddings directly through a one-step learning process.
View Article and Find Full Text PDFMotivation: Gene set enrichment (GSE) analysis allows for an interpretation of gene expression through pre-defined gene set databases and is a critical step in understanding different phenotypes. With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, GSE analysis can be performed on fine-grained gene expression data to gain a nuanced understanding of phenotypes of interest. However, with the cellular heterogeneity in single-cell gene profiles, current statistical GSE analysis methods sometimes fail to identify enriched gene sets.
View Article and Find Full Text PDFAs available genomic interval data increase in scale, we require fast systems to search them. A common approach is simple string matching to compare a search term to metadata, but this is limited by incomplete or inaccurate annotations. An alternative is to compare data directly through genomic region overlap analysis, but this approach leads to challenges like sparsity, high dimensionality, and computational expense.
View Article and Find Full Text PDFBackground: As biological data increases, we need additional infrastructure to share it and promote interoperability. While major effort has been put into sharing data, relatively less emphasis is placed on sharing metadata. Yet, sharing metadata is also important, and in some ways has a wider scope than sharing data itself.
View Article and Find Full Text PDF