The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
Retinal ganglion cells form orderly topographic connections with the tectum, establishing a continuous neural representation of visual space. Mapping along the dorsal-ventral axis requires interactions between EphB and ephrin-B cell-surface molecules expressed as countergradients in both retina and tectum. We have discovered that the diffusible TGFss-related factor Radar (Gdf6a) is necessary and sufficient for activation of dorsal markers, such as Bmp4, Tbx5, Tbx2b, and Ephrin-B2, and suppression of the ventral marker Vax2 in the zebrafish retina.
View Article and Find Full Text PDFThe retinotectal projection has long been studied experimentally and theoretically, as a model for the formation of topographic brain maps. Neighbouring retinal ganglion cells (RGCs) project their axons to neighbouring positions in the optic tectum, thus re-establishing a continuous neural representation of visual space. Mapping along this axis requires chemorepellent signalling from tectal cells, expressing ephrin-A ligands, to retinal growth cones, expressing EphA receptors.
View Article and Find Full Text PDFWe present a pilot enhancer trap screen using GAL4 to drive expression of upstream activator sequence (UAS)-linked transgenes in expression patterns dictated by endogenous enhancers in zebrafish. The patterns presented include expression in small subsets of neurons throughout the larval brain, which in some cases persist into adult. Through targeted photoconversion of UAS-driven Kaede and variegated expression of UAS-driven GFP in single cells, we begin to characterize the cellular components of labeled circuits.
View Article and Find Full Text PDFThe neural circuitry that constrains visual acuity in the CNS has not been experimentally identified. We show here that zebrafish blumenkohl (blu) mutants are impaired in resolving rapid movements and fine spatial detail. The blu gene encodes a vesicular glutamate transporter expressed by retinal ganglion cells.
View Article and Find Full Text PDFThe visual system converts the distribution and wavelengths of photons entering the eye into patterns of neuronal activity, which then drive motor and endocrine behavioral responses. The gene products important for visual processing by a living and behaving vertebrate animal have not been identified in an unbiased fashion. Likewise, the genes that affect development of the nervous system to shape visual function later in life are largely unknown.
View Article and Find Full Text PDF