Publications by authors named "Nathan Hart"

In the open ocean, achieving camouflage is complicated by the fact that the downwelling light is generally much brighter than the upwelling light, which means that any object, even if its ventral surface is white due to countershading, will appear as a dark silhouette when viewed from below. To overcome this, many marine species employ counterillumination, whereby light is emitted from photophores on their ventral surface to replace the downwelling light blocked by their body. However, only a single behavioral study has tested the efficacy of counterillumination as an anti-predation strategy.

View Article and Find Full Text PDF

Carotenoid pigments produce the yellow and red colors of birds and other vertebrates. Despite their importance in social signaling and sexual selection, our understanding of how carotenoid ornamentation evolves in nature remains limited. Here, we examine the long-tailed finch Poephila acuticauda, an Australian songbird with a yellow-billed western subspecies acuticauda and a red-billed eastern subspecies hecki, which hybridize where their ranges overlap.

View Article and Find Full Text PDF
Article Synopsis
  • Many animals, like the humbug damselfish, use high-contrast body patterns for a defense mechanism known as motion dazzle, which confuses predators by creating misleading visual cues about their movement and shape.
  • This study explored how these fish utilize their striped patterns against different high-contrast backgrounds, finding that their reliance on confusing motion cues changes according to the background's frequency and perceivability.
  • Humbug damselfish also adjust their behavior based on background patterns, staying closer and moving less against similar patterns to camouflage and moving more against complex backgrounds to enhance their motion dazzle effect.
View Article and Find Full Text PDF

The frequency of unprovoked shark bites is increasing worldwide, leading to a growing pressure for mitigation measures to reduce shark-bite risk while maintaining conservation objectives. Personal shark deterrents are a promising and non-lethal strategy that can protect ocean users, but few have been independently and scientifically tested. In Australia, bull (Carcharhinus leucas), tiger (Galeocerdo cuvier), and white sharks (Carcharodon carcharias) are responsible for the highest number of bites and fatalities.

View Article and Find Full Text PDF

Aposematic prey advertise their unprofitability with conspicuous warning signals that are often composed of multiple color patterns. Many species show intraspecific variation in these patterns even though selection is expected to favor invariable warning signals that enhance predator learning. However, if predators acquire avoidance to specific signal components, this might relax selection on other aposematic traits and explain variability.

View Article and Find Full Text PDF

Bluelined goatfish () rapidly change their body colour from a white horizontally banded pattern to a seemingly more conspicuous vertically banded red pattern, often when foraging. Given the apparent conspicuousness of the pattern to a range of observers, it seems unlikely that this colour change is used for camouflage and instead may be used for communication/signalling. Goatfish often drive multispecies associations, and it is possible that goatfish use this colour change as a foraging success signal to facilitate cooperation, increase food acquisition, and reduce predation risk through a 'safety in numbers' strategy.

View Article and Find Full Text PDF

Many animal species can rapidly change their body colouration and patterning, but often the ecological drivers of such changes are unknown. Here, we explored dynamic colour change in the bluelined goatfish, , a temperate marine teleost species. can change in a matter of seconds, from a uniform white colour to display prominent, vertical, dark red stripes.

View Article and Find Full Text PDF

The field of micro-/nanorobotics has attracted extensive interest from a variety of research communities and witnessed enormous progress in a broad array of applications ranging from basic research to global healthcare and to environmental remediation and protection. In particular, micro-/nanoscale robots provide an enabling platform for the development of next-generation chemical and biological sensing modalities, owing to their unique advantages as programmable, self-sustainable, and/or autonomous mobile carriers to accommodate and promote physical and chemical processes. In this review, we intend to provide an overview of the state-of-the-art development in this area and share our perspective in the future trend.

View Article and Find Full Text PDF

The use of microRNAs as clinical cancer biomarkers is hindered by the absence of accurate, fast and inexpensive assays for their detection in biofluids. Here we report a one-step and one-pot isothermal assay that leverages rolling-circle amplification and the endonuclease Cas12a for the accurate detection of specific miRNAs. The assay exploits the cis-cleavage activity of Cas12a to enable exponential rolling-circle amplification of target sequences and its trans-cleavage activity for their detection and for signal amplification.

View Article and Find Full Text PDF

The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity.

View Article and Find Full Text PDF

Despite lizards using a wide range of colour signals, the limited variation in photoreceptor spectral sensitivities across lizards suggests only weak selection for species-specific, spectral tuning of photoreceptors. Some species, however, have enhanced short-wavelength sensitivity, which probably helps with the detection of signals rich in ultraviolet and short wavelengths. In this study, we examined the visual system of Tiliqua rugosa, which has an ultraviolet/blue tongue, to gain insight into this species' visual ecology.

View Article and Find Full Text PDF

Live imaging of zebrafish embryos that maintains normal development can be difficult to achieve due to a combination of sample mounting, immobilization, and phototoxicity issues that, once overcome, often still results in image quality sufficiently poor that computer-aided analysis or even manual analysis is not possible. Here, we describe our mounting strategy for imaging the zebrafish midbrain-hindbrain boundary (MHB) with light sheet fluorescence microscopy (LSFM) and pilot experiments to create a study-specific set of parameters for semiautomatically tracking cellular movements in the embryonic midbrain primordium during zebrafish segmentation.

View Article and Find Full Text PDF

From the combined perspective of biologists, microscope instrumentation developers, imaging core facility scientists, and high performance computing experts, we discuss the challenges faced when selecting imaging and analysis tools in the field of light-sheet microscopy. Our goal is to provide a contextual framework of basic computing concepts that cell and developmental biologists can refer to when mapping the peculiarities of different light-sheet data to specific existing computing environments and image analysis pipelines. We provide our perspective on efficient processes for tool selection and review current hardware and software commonly used in light-sheet image analysis, as well as discuss what ideal tools for the future may look like.

View Article and Find Full Text PDF

Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern.

View Article and Find Full Text PDF

Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.

View Article and Find Full Text PDF

In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions.

View Article and Find Full Text PDF

Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G.

View Article and Find Full Text PDF

Snakes are descended from highly visual lizards [1] but have limited (probably dichromatic) color vision attributed to a dim-light lifestyle of early snakes [2-4]. The living species of front-fanged elapids, however, are ecologically very diverse, with ∼300 terrestrial species (cobras, taipans, etc.) and ∼60 fully marine sea snakes, plus eight independently marine, amphibious sea kraits [1].

View Article and Find Full Text PDF

The visual sense of elasmobranch fishes is poorly studied compared to their bony cousins, the teleosts. Nevertheless, the elasmobranch eye features numerous specialisations that have no doubt facilitated the diversification and evolutionary success of this fascinating taxon. In this review, I highlight recent discoveries on the nature and phylogenetic distribution of visual pigments in sharks and rays.

View Article and Find Full Text PDF

In this study, we investigated the visual system of the Port Jackson shark Heterodontus portusjacksoni, a shallow-dwelling benthic species and generalist predator endemic to the temperate coastal waters around southern Australia. Measurements of retinal spectral sensitivity in juvenile sharks, made using single flash and heterochromatic flicker photometry under conditions of dark- or light-adaptation, indicated a peak sensitivity at around 500 nm, with no evidence of a spectral shift with increasing levels of light adaptation. Histological sections of the retina revealed a heavily rod dominated retina containing only a few small cell profiles in the photoreceptor layer that might represent a sparse cone population or may be immature rods.

View Article and Find Full Text PDF

Most animals rely on vision to perform a range of behavioural tasks and variations in the anatomy and physiology of the eye likely reflect differences in habitat and life history. Moreover, eye design represents a balance between often conflicting requirements for gathering different forms of visual information. The trade-off between spatial resolving power and contrast sensitivity is common to all visual systems, and European honeybees (Apis mellifera) present an important opportunity to better understand this trade-off.

View Article and Find Full Text PDF

The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date.

View Article and Find Full Text PDF

The well-studied phylogeny and ecology of dragon lizards and their range of visually mediated behaviors provide an opportunity to examine the factors that shape retinal organization. Dragon lizards consist of three evolutionarily stable groups based on their shelter type, including burrows, shrubs, and rocks. This allows us to test whether microhabitat changes are reflected in their retinal organization.

View Article and Find Full Text PDF

The viviparous sea snakes (Hydrophiinae) are a secondarily aquatic radiation of more than 60 species that possess many phenotypic adaptations to marine life. However, virtually nothing is known of the role and sensitivity of hearing in sea snakes. This study investigated the hearing sensitivity of the fully marine sea snake by measuring auditory evoked potential (AEP) audiograms for two individuals.

View Article and Find Full Text PDF

Vision is crucial for animals to find prey, locate conspecifics and navigate within cluttered landscapes. Animals need to discriminate objects against a visually noisy background. However, the ability to detect spatial information is limited by eye size.

View Article and Find Full Text PDF