Purpose: Intraocular pressure (IOP) remains the only modifiable risk factor for glaucoma progression. Our previous discovery that stimulation of nuclei within the hypothalamus can modulate IOP, intracranial pressure (ICP), and translaminar pressure difference (TLPD) fluctuations led us to investigate this pathway further. Our purpose was to determine the role of orexin neurons, primarily located in the dorsomedial hypothalamus (DMH) and perifornical (PeF) regions of the hypothalamus, in modulating these pressures.
View Article and Find Full Text PDFPurpose: Intraocular pressure (IOP) fluctuation has recently been identified as a risk factor for glaucoma progression. Further, decreases in intracranial pressure (ICP), with postulated increases in the translaminar pressure gradient across the lamina cribrosa, has been reported in glaucoma patients. We hypothesized that circadian fluctuations in IOP and the translaminar pressure gradient are influenced, at least in part, by central autonomic regulatory neurons within the dorsomedial and perifornical hypothalamus (DMH/PeF).
View Article and Find Full Text PDFBackground: Although the hypothalamic orexin system is known to regulate appetitive behaviors and promote wakefulness and arousal (Sakurai, 2007 [56]), this system may also be important in adaptive and pathological anxiety/stress responses (Suzuki et al., 2005 [4]). In a recent study, we demonstrated that CSF orexin levels were significantly higher in patients experiencing panic attacks compared to non-panicking depressed subjects (Johnson et al.
View Article and Find Full Text PDFThe N-type voltage-gated calcium channel (Cav 2.2) has gained immense prominence in the treatment of chronic pain. While decreased channel function is ultimately anti-nociceptive, directly targeting the channel can lead to multiple adverse side effects.
View Article and Find Full Text PDF