Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength.
View Article and Find Full Text PDFMoiré superlattices in twisted two-dimensional materials have generated tremendous excitement as a platform for achieving quantum properties on demand. However, the moiré pattern is highly sensitive to the interlayer atomic registry, and current assembly techniques suffer from imprecise control of the average twist angle, spatial inhomogeneity in the local twist angle, and distortions caused by random strain. We manipulated the moiré patterns in hetero- and homobilayers through in-plane bending of monolayer ribbons, using the tip of an atomic force microscope.
View Article and Find Full Text PDFTwisted van der Waals multilayers are widely regarded as a rich platform to access novel electronic phases thanks to the multiple degrees of freedom available for controlling their electronic and chemical properties. Here, we propose that the stacking domains that form naturally due to the relative twist between successive layers act as an additional "knob" for controlling the behavior of these systems and report the emergence and engineering of stacking domain-dependent surface chemistry in twisted few-layer graphene. Using mid-infrared near-field optical microscopy and atomic force microscopy, we observe a selective adhesion of metallic nanoparticles and liquid water at the domains with rhombohedral stacking configurations of minimally twisted double bi- and trilayer graphene.
View Article and Find Full Text PDFThe electronic and structural properties of atomically thin materials can be controllably tuned by assembling them with an interlayer twist. During this process, constituent layers spontaneously rearrange themselves in search of a lowest energy configuration. Such relaxation phenomena can lead to unexpected and novel material properties.
View Article and Find Full Text PDFBroken symmetries induce strong even-order nonlinear optical responses in materials and at interfaces. Unlike conventional covalently bonded nonlinear crystals, van der Waals (vdW) heterostructures feature layers that can be stacked at arbitrary angles, giving complete control over the presence or lack of inversion symmetry at a crystal interface. Here, we report highly tunable second harmonic generation (SHG) from nanomechanically rotatable stacks of bulk hexagonal boron nitride (BN) crystals and introduce the term twistoptics to describe studies of optical properties in twistable vdW systems.
View Article and Find Full Text PDFGraphene-based heterostructures display a variety of phenomena that are strongly tunable by electrostatic local gates. Monolayer graphene (MLG) exhibits tunable surface plasmon polaritons, as revealed by scanning nano-infrared experiments. In bilayer graphene (BLG), an electronic gap is induced by a perpendicular displacement field.
View Article and Find Full Text PDFAtomically thin van der Waals materials stacked with an interlayer twist have proven to be an excellent platform toward achieving gate-tunable correlated phenomena linked to the formation of flat electronic bands. In this work we demonstrate the formation of emergent correlated phases in multilayer rhombohedral graphene--a simple material that also exhibits a flat electronic band edge but without the need of having a moiré superlattice induced by twisted van der Waals layers. We show that two layers of bilayer graphene that are twisted by an arbitrary tiny angle host large (micrometer-scale) regions of uniform rhombohedral four-layer (ABCA) graphene that can be independently studied.
View Article and Find Full Text PDFThe emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe possibility of confining interlayer excitons in interfacial moiré patterns has recently gained attention as a strategy to form ordered arrays of zero-dimensional quantum emitters and topological superlattices in transition metal dichalcogenide heterostructures. Strain is expected to play an important role in the modulation of the moiré potential landscape, tuning the array of quantum dot-like zero-dimensional traps into parallel stripes of one-dimensional quantum wires. Here, we present real-space imaging of unstrained zero-dimensional and strain-induced one-dimensional moiré patterns along with photoluminescence measurements of the corresponding excitonic emission from WSe/MoSe heterobilayers.
View Article and Find Full Text PDFMoiré superlattices in van der Waals heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. Indeed, electrons in these structures have been recently found to exhibit a number of emergent properties that the individual layers themselves do not exhibit. This includes superconductivity, magnetism, topological edge states, exciton trapping and correlated insulator phases.
View Article and Find Full Text PDFIn van der Waals (vdW) heterostructures consisting of atomically thin crystals layered on top of one another, lattice mismatch and rotation between the layers can result in long-wavelength moiré superlattices. These moiré patterns can drive notable band structure reconstruction of the composite material, leading to a wide range of emergent phenomena including superconductivity, magnetism, fractional Chern insulating states and moiré excitons. Here, we investigate devices consisting of monolayer graphene encapsulated between two crystals of boron nitride (BN), in which the rotational alignment of all three components is controlled.
View Article and Find Full Text PDFTopological quantum materials exhibit fascinating properties, with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend.
View Article and Find Full Text PDF